• Previous Article
    On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS models
  • DCDS Home
  • This Issue
  • Next Article
    Stability analysis for linear heat conduction with memory kernels described by Gamma functions
August  2015, 35(8): 3585-3626. doi: 10.3934/dcds.2015.35.3585

On the blow-up results for a class of strongly perturbed semilinear heat equations

1. 

Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France

Received  May 2014 Revised  December 2014 Published  February 2015

We consider in this work some class of strongly perturbed for the semilinear heat equation with Sobolev sub-critical power nonlinearity. We first derive a Lyapunov functional in similarity variables and then use it to derive the blow-up rate. We also classify all possible asymptotic behaviors of the solution when it approaches to singularity. Finally, we describe precisely the blow-up profiles corresponding to these behaviors.
Citation: Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585
References:
[1]

J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations,, Nonlinearity, 7 (1994), 539.  doi: 10.1088/0951-7715/7/2/011.  Google Scholar

[2]

T. Cazenave and P. L. Lions, Solutions globales d'équations de la chaleur semi linéaires,, Comm. Partial Differential Equations, 9 (1984), 955.  doi: 10.1080/03605308408820353.  Google Scholar

[3]

S. Filippas and R. V. Kohn, Refined asymptotics for the blowup of $u_t-\Delta u=u^p$,, Comm. Pure Appl. Math., 45 (1992), 821.  doi: 10.1002/cpa.3160450703.  Google Scholar

[4]

S. Filippas and W. X. Liu, On the blowup of multidimensional semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 313.   Google Scholar

[5]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297.  doi: 10.1002/cpa.3160380304.  Google Scholar

[6]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[7]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations,, Comm. Pure Appl. Math., 42 (1989), 845.  doi: 10.1002/cpa.3160420607.  Google Scholar

[8]

Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity,, Indiana Univ. Math. J., 53 (2004), 483.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar

[9]

M. A. Hamza and H. Zaag, Lyapunov functional and blow-up results for a class of perturbations of semilinear wave equations in the critical case,, J. Hyperbolic Differ. Equ., 9 (2012), 195.  doi: 10.1142/S0219891612500063.  Google Scholar

[10]

M. A. Hamza and H. Zaag, A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations,, Nonlinearity, 25 (2012), 2759.  doi: 10.1088/0951-7715/25/9/2759.  Google Scholar

[11]

M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 131.   Google Scholar

[12]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics, (1995).   Google Scholar

[13]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968).   Google Scholar

[14]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t=\Delta u + \| u \|^{p-1}u$,, Duke Math. J., 86 (1997), 143.  doi: 10.1215/S0012-7094-97-08605-1.  Google Scholar

[15]

F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications,, Math. Ann., 316 (2000), 103.  doi: 10.1007/s002080050006.  Google Scholar

[16]

V. T. Nguyen and H. Zaag, Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations,, preprint, ().   Google Scholar

[17]

N. Nouaili and H. Zaag, A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up,, Trans. Amer. Math. Soc., 362 (2010), 3391.  doi: 10.1090/S0002-9947-10-04902-0.  Google Scholar

[18]

P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem,, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195.   Google Scholar

[19]

P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar

[20]

F. Rellich, Perturbation Theory of Eigenvalue Problems,, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz, (1969).   Google Scholar

[21]

J. J. L. Velázquez, Higher-dimensional blow up for semilinear parabolic equations,, Comm. Partial Differential Equations, 17 (1992), 1567.  doi: 10.1080/03605309208820896.  Google Scholar

[22]

J. J. L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions,, Trans. Amer. Math. Soc., 338 (1993), 441.  doi: 10.1090/S0002-9947-1993-1134760-2.  Google Scholar

[23]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math., 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[24]

H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations,, Comm. Math. Phys., 225 (2002), 523.  doi: 10.1007/s002200100589.  Google Scholar

show all references

References:
[1]

J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations,, Nonlinearity, 7 (1994), 539.  doi: 10.1088/0951-7715/7/2/011.  Google Scholar

[2]

T. Cazenave and P. L. Lions, Solutions globales d'équations de la chaleur semi linéaires,, Comm. Partial Differential Equations, 9 (1984), 955.  doi: 10.1080/03605308408820353.  Google Scholar

[3]

S. Filippas and R. V. Kohn, Refined asymptotics for the blowup of $u_t-\Delta u=u^p$,, Comm. Pure Appl. Math., 45 (1992), 821.  doi: 10.1002/cpa.3160450703.  Google Scholar

[4]

S. Filippas and W. X. Liu, On the blowup of multidimensional semilinear heat equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 313.   Google Scholar

[5]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations,, Comm. Pure Appl. Math., 38 (1985), 297.  doi: 10.1002/cpa.3160380304.  Google Scholar

[6]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,, Indiana Univ. Math. J., 36 (1987), 1.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[7]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations,, Comm. Pure Appl. Math., 42 (1989), 845.  doi: 10.1002/cpa.3160420607.  Google Scholar

[8]

Y. Giga, S. Matsui and S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity,, Indiana Univ. Math. J., 53 (2004), 483.  doi: 10.1512/iumj.2004.53.2401.  Google Scholar

[9]

M. A. Hamza and H. Zaag, Lyapunov functional and blow-up results for a class of perturbations of semilinear wave equations in the critical case,, J. Hyperbolic Differ. Equ., 9 (2012), 195.  doi: 10.1142/S0219891612500063.  Google Scholar

[10]

M. A. Hamza and H. Zaag, A Lyapunov functional and blow-up results for a class of perturbed semilinear wave equations,, Nonlinearity, 25 (2012), 2759.  doi: 10.1088/0951-7715/25/9/2759.  Google Scholar

[11]

M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 131.   Google Scholar

[12]

T. Kato, Perturbation Theory for Linear Operators,, Classics in Mathematics, (1995).   Google Scholar

[13]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, (1968).   Google Scholar

[14]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t=\Delta u + \| u \|^{p-1}u$,, Duke Math. J., 86 (1997), 143.  doi: 10.1215/S0012-7094-97-08605-1.  Google Scholar

[15]

F. Merle and H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications,, Math. Ann., 316 (2000), 103.  doi: 10.1007/s002080050006.  Google Scholar

[16]

V. T. Nguyen and H. Zaag, Construction of a stable blow-up solution for a class of strongly perturbed semilinear heat equations,, preprint, ().   Google Scholar

[17]

N. Nouaili and H. Zaag, A Liouville theorem for vector valued semilinear heat equations with no gradient structure and applications to blow-up,, Trans. Amer. Math. Soc., 362 (2010), 3391.  doi: 10.1090/S0002-9947-10-04902-0.  Google Scholar

[18]

P. Quittner, A priori bounds for global solutions of a semilinear parabolic problem,, Acta Math. Univ. Comenian. (N.S.), 68 (1999), 195.   Google Scholar

[19]

P. Quittner and P. Souplet, Superlinear Parabolic Problems,, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar

[20]

F. Rellich, Perturbation Theory of Eigenvalue Problems,, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz, (1969).   Google Scholar

[21]

J. J. L. Velázquez, Higher-dimensional blow up for semilinear parabolic equations,, Comm. Partial Differential Equations, 17 (1992), 1567.  doi: 10.1080/03605309208820896.  Google Scholar

[22]

J. J. L. Velázquez, Classification of singularities for blowing up solutions in higher dimensions,, Trans. Amer. Math. Soc., 338 (1993), 441.  doi: 10.1090/S0002-9947-1993-1134760-2.  Google Scholar

[23]

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation,, Israel J. Math., 38 (1981), 29.  doi: 10.1007/BF02761845.  Google Scholar

[24]

H. Zaag, One-dimensional behavior of singular $N$-dimensional solutions of semilinear heat equations,, Comm. Math. Phys., 225 (2002), 523.  doi: 10.1007/s002200100589.  Google Scholar

[1]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[4]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[5]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[6]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[7]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[8]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[9]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[10]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[11]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[12]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[13]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[14]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[15]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[16]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[17]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[18]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[19]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[20]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]