August  2015, 35(8): 3707-3719. doi: 10.3934/dcds.2015.35.3707

Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities

1. 

Division of Mathematical Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

Received  April 2014 Revised  December 2014 Published  February 2015

It is a big problem to distinguish between integrable and non-integrable Hamiltonian systems. We provide a new approach to prove the non-integrability of homogeneous Hamiltonian systems with two degrees of freedom. The homogeneous degree can be taken from real values (not necessarily integer). The proof is based on the blowing-up theory which McGehee established in the collinear three-body problem. We also compare our result with Molares-Ramis theory which is the strongest theory in this field.
Citation: Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707
References:
[1]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, $2^{nd}$ edition, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[2]

H. Bruns, Über die Integrale des Vielkörper-Problems,, Acta Math., 11 (1887), 25.  doi: 10.1007/BF02612319.  Google Scholar

[3]

R. L. Devaney, Triple collision in the planar isosceles three-body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[4]

R. L. Devaney, Motion near total collapse in the planar isosceles three-body problem,, Celestial Mech., 28 (1982), 25.  doi: 10.1007/BF01230657.  Google Scholar

[5]

G. Duval and A. J. Maciejewski, Integrability of Hamiltonian systems with homogeneous potentials of degrees 2. An application of higher order variational equations,, Discrete Contin. Dyn. Syst., 34 (2014), 4589.  doi: 10.3934/dcds.2014.34.4589.  Google Scholar

[6]

S. Kovalevski, Sur le probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.  doi: 10.1007/BF02592182.  Google Scholar

[7]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[8]

R. Moeckel, Heteroclinic phenomena in the isosceles three-body problem,, SIAM J. Math. Anal., 15 (1984), 857.  doi: 10.1137/0515065.  Google Scholar

[9]

J. J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems,, Birkhaeuser Basel, (1999).  doi: 10.1007/978-3-0348-8718-2.  Google Scholar

[10]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113.   Google Scholar

[11]

H. Poincaré, New Methods of Celestial Mechanics Vol. 1,, American Institute of Physics, (1993).   Google Scholar

[12]

M. E. Sansaturio, I. Vigo-Aguiar and J. M. Ferrándiz, Non-integrability of some Hamiltonian systems in polar coordinates,, J. Phys. A: Math. Gen., 30 (1997), 5869.  doi: 10.1088/0305-4470/30/16/026.  Google Scholar

[13]

M. Shibayama, Non-integrability of the collinear three-body problem,, Discrete Contin. Dyn. Syst., 30 (2011), 299.  doi: 10.3934/dcds.2011.30.299.  Google Scholar

[14]

M. Shibayama and K. Yagasaki, Heteroclinic connections between triple collisions and relative periodic orbits in the isosceles three-body problem,, Nonlinearity, 22 (2009), 2377.  doi: 10.1088/0951-7715/22/10/004.  Google Scholar

[15]

H. Yoshida, Existence of exponentially unstable periodic solutions and the nonintegrability of homogeneous Hamiltonian systems,, Physica, 21 (1986), 163.  doi: 10.1016/0167-2789(86)90087-4.  Google Scholar

[16]

H. Yoshida, A criterion for the nonexistence of an additional integral in Hamiltonian systems with a homogeneous potential,, Physica, 29 (1987), 128.  doi: 10.1016/0167-2789(87)90050-9.  Google Scholar

[17]

M. Yoshino, Smooth-integrable and analytic-nonintegrable resonant Hamiltonians,, RIMS Kokyuroku Bessatsu, B40 (2013), 177.   Google Scholar

[18]

S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. I., Funktsional. Anal. i Prilozhen., 16 (1982), 30.   Google Scholar

[19]

S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. II., Funktsional. Anal. i Prilozhen., 17 (1983), 8.   Google Scholar

show all references

References:
[1]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics,, $2^{nd}$ edition, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[2]

H. Bruns, Über die Integrale des Vielkörper-Problems,, Acta Math., 11 (1887), 25.  doi: 10.1007/BF02612319.  Google Scholar

[3]

R. L. Devaney, Triple collision in the planar isosceles three-body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[4]

R. L. Devaney, Motion near total collapse in the planar isosceles three-body problem,, Celestial Mech., 28 (1982), 25.  doi: 10.1007/BF01230657.  Google Scholar

[5]

G. Duval and A. J. Maciejewski, Integrability of Hamiltonian systems with homogeneous potentials of degrees 2. An application of higher order variational equations,, Discrete Contin. Dyn. Syst., 34 (2014), 4589.  doi: 10.3934/dcds.2014.34.4589.  Google Scholar

[6]

S. Kovalevski, Sur le probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.  doi: 10.1007/BF02592182.  Google Scholar

[7]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.  doi: 10.1007/BF01390175.  Google Scholar

[8]

R. Moeckel, Heteroclinic phenomena in the isosceles three-body problem,, SIAM J. Math. Anal., 15 (1984), 857.  doi: 10.1137/0515065.  Google Scholar

[9]

J. J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems,, Birkhaeuser Basel, (1999).  doi: 10.1007/978-3-0348-8718-2.  Google Scholar

[10]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113.   Google Scholar

[11]

H. Poincaré, New Methods of Celestial Mechanics Vol. 1,, American Institute of Physics, (1993).   Google Scholar

[12]

M. E. Sansaturio, I. Vigo-Aguiar and J. M. Ferrándiz, Non-integrability of some Hamiltonian systems in polar coordinates,, J. Phys. A: Math. Gen., 30 (1997), 5869.  doi: 10.1088/0305-4470/30/16/026.  Google Scholar

[13]

M. Shibayama, Non-integrability of the collinear three-body problem,, Discrete Contin. Dyn. Syst., 30 (2011), 299.  doi: 10.3934/dcds.2011.30.299.  Google Scholar

[14]

M. Shibayama and K. Yagasaki, Heteroclinic connections between triple collisions and relative periodic orbits in the isosceles three-body problem,, Nonlinearity, 22 (2009), 2377.  doi: 10.1088/0951-7715/22/10/004.  Google Scholar

[15]

H. Yoshida, Existence of exponentially unstable periodic solutions and the nonintegrability of homogeneous Hamiltonian systems,, Physica, 21 (1986), 163.  doi: 10.1016/0167-2789(86)90087-4.  Google Scholar

[16]

H. Yoshida, A criterion for the nonexistence of an additional integral in Hamiltonian systems with a homogeneous potential,, Physica, 29 (1987), 128.  doi: 10.1016/0167-2789(87)90050-9.  Google Scholar

[17]

M. Yoshino, Smooth-integrable and analytic-nonintegrable resonant Hamiltonians,, RIMS Kokyuroku Bessatsu, B40 (2013), 177.   Google Scholar

[18]

S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. I., Funktsional. Anal. i Prilozhen., 16 (1982), 30.   Google Scholar

[19]

S. L. Ziglin, Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics. II., Funktsional. Anal. i Prilozhen., 17 (1983), 8.   Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[3]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[4]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[5]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[6]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[7]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[8]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[11]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[12]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[13]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[15]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[16]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[17]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[18]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]