American Institute of Mathematical Sciences

August  2015, 35(8): 3745-3769. doi: 10.3934/dcds.2015.35.3745

Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems

 1 Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Received  May 2014 Revised  December 2014 Published  February 2015

In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynamical systems. The existence and bifurcation of random periodic (random almost periodic, random almost automorphic) solutions have been established for a one-dimensional stochastic equation with multiplicative noise.
Citation: Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745
References:
 [1] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. [2] L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one, Diffusion Processes and Related Problems in Analysis, Vol II: Stochastic Flows, Birkhauser, Boston, 27 (1992), 241-255. [3] L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems, Advances in Nonlinear Stochastic Mechanics, Kluwer Acad. Publ., Dordrecht, 47 (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3. [4] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. [5] P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21. doi: 10.1142/S0219493706001621. [6] P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. [7] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Continuous Dynamical Systems, 21 (2008), 415-443. doi: 10.3934/dcds.2008.21.415. [8] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439. [9] T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047. [10] T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513. [11] T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201. doi: 10.1023/A:1022902802385. [12] I. Chueshow, Monotone Random Systems-Theory and Applications, Lecture Notes in Mathematics, 1779, Springer, Berlin, 2002. doi: 10.1007/b83277. [13] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. [14] H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation, J. Dyn. Diff. Eqns., 10 (1998), 259-274. doi: 10.1023/A:1022665916629. [15] J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151. doi: 10.4310/CMS.2003.v1.n1.a9. [16] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics 377, Springer-Verlag, New York, 1974. [17] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. [18] M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681. doi: 10.1007/s10884-011-9222-5. [19] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. [20] J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete and Continuous Dynamical Systems, 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855. [21] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge, 1982. [22] Q. Liu and Y. Wang, Phase-translation group actions on strongly monotone skew-product semiflows, Transactions of American Mathematical Society, 364 (2012), 3781-3804. doi: 10.1090/S0002-9947-2012-05555-3. [23] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185-192. [24] G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971. [25] R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. [26] W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), 1-93. doi: 10.1090/memo/0647. [27] W. Shen and Y. Yi, Dynamics of almost periodic scalar parabolic equations, J. Differential Equations, 122 (1995), 114-136. doi: 10.1006/jdeq.1995.1141. [28] W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence, J. Differential Equations, 122 (1995), 373-397. doi: 10.1006/jdeq.1995.1152. [29] W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures, Trans. Amer. Math. Soc., 347 (1995), 4413-4431. doi: 10.1090/S0002-9947-1995-1311916-9. [30] W. Shen and Y. Yi, Ergodicity of minimal sets in scalar parabolic equations, J. Dynamics and Differential Equations, 8 (1996), 299-323. doi: 10.1007/BF02218894. [31] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. [32] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. [33] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems Series A, 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. [34] B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations, Nonlinear Analysis TMA, 103 (2014), 9-25. doi: 10.1016/j.na.2014.02.013. [35] Y. Wang, Asymptotic symmetry in strongly monotone skew-product semiflows with applications, Nonlinearity, 22 (2009), 765-782. doi: 10.1088/0951-7715/22/4/005. [36] J. R. Ward Jr., Bounded and almost periodic solutions of semi-linear parabolic equations, Rocky Mountain Journal of Mathematics, 18 (1988), 479-494. doi: 10.1216/RMJ-1988-18-2-479. [37] K. Xu, Bifurcations of random differential equations in dimension one, Random and Computational Dynamics, 1 (1993), 277-305. [38] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975. [39] S. Zaidman, Topics in Abstract Differential Equations II, Pitman Research Notes in Mathematics Series 321, Longman Group Limited, England, 1995. [40] H. Zhao and Z. Zheng, Random periodic solutions of random dynamical systems, J. Differential Equations, 246 (2009), 2020-2038. doi: 10.1016/j.jde.2008.10.011.

show all references

References:
 [1] L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7. [2] L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one, Diffusion Processes and Related Problems in Analysis, Vol II: Stochastic Flows, Birkhauser, Boston, 27 (1992), 241-255. [3] L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems, Advances in Nonlinear Stochastic Mechanics, Kluwer Acad. Publ., Dordrecht, 47 (1996), 19-28. doi: 10.1007/978-94-009-0321-0_3. [4] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992. [5] P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1-21. doi: 10.1142/S0219493706001621. [6] P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869. doi: 10.1016/j.jde.2008.05.017. [7] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Continuous Dynamical Systems, 21 (2008), 415-443. doi: 10.3934/dcds.2008.21.415. [8] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439-455. doi: 10.3934/dcdsb.2010.14.439. [9] T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047. [10] T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 10 (2003), 491-513. [11] T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201. doi: 10.1023/A:1022902802385. [12] I. Chueshow, Monotone Random Systems-Theory and Applications, Lecture Notes in Mathematics, 1779, Springer, Berlin, 2002. doi: 10.1007/b83277. [13] H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Th. Re. Fields, 100 (1994), 365-393. doi: 10.1007/BF01193705. [14] H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation, J. Dyn. Diff. Eqns., 10 (1998), 259-274. doi: 10.1023/A:1022665916629. [15] J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary, Comm. Math. Sci., 1 (2003), 133-151. doi: 10.4310/CMS.2003.v1.n1.a9. [16] A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics 377, Springer-Verlag, New York, 1974. [17] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45. doi: 10.1080/17442509608834083. [18] M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion, J. Dynam. Differential Equations, 23 (2011), 671-681. doi: 10.1007/s10884-011-9222-5. [19] J. K. Hale, Asymptotic Behavior of Dissipative Systems, American Mathematical Society, Providence, RI, 1988. [20] J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains, Discrete and Continuous Dynamical Systems, 24 (2009), 855-882. doi: 10.3934/dcds.2009.24.855. [21] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge University Press, Cambridge, 1982. [22] Q. Liu and Y. Wang, Phase-translation group actions on strongly monotone skew-product semiflows, Transactions of American Mathematical Society, 364 (2012), 3781-3804. doi: 10.1090/S0002-9947-2012-05555-3. [23] B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, Dresden, (1992), 185-192. [24] G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971. [25] R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9. [26] W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Mem. Amer. Math. Soc., 136 (1998), 1-93. doi: 10.1090/memo/0647. [27] W. Shen and Y. Yi, Dynamics of almost periodic scalar parabolic equations, J. Differential Equations, 122 (1995), 114-136. doi: 10.1006/jdeq.1995.1141. [28] W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence, J. Differential Equations, 122 (1995), 373-397. doi: 10.1006/jdeq.1995.1152. [29] W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures, Trans. Amer. Math. Soc., 347 (1995), 4413-4431. doi: 10.1090/S0002-9947-1995-1311916-9. [30] W. Shen and Y. Yi, Ergodicity of minimal sets in scalar parabolic equations, J. Dynamics and Differential Equations, 8 (1996), 299-323. doi: 10.1007/BF02218894. [31] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3. [32] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015. [33] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems Series A, 34 (2014), 269-300. doi: 10.3934/dcds.2014.34.269. [34] B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations, Nonlinear Analysis TMA, 103 (2014), 9-25. doi: 10.1016/j.na.2014.02.013. [35] Y. Wang, Asymptotic symmetry in strongly monotone skew-product semiflows with applications, Nonlinearity, 22 (2009), 765-782. doi: 10.1088/0951-7715/22/4/005. [36] J. R. Ward Jr., Bounded and almost periodic solutions of semi-linear parabolic equations, Rocky Mountain Journal of Mathematics, 18 (1988), 479-494. doi: 10.1216/RMJ-1988-18-2-479. [37] K. Xu, Bifurcations of random differential equations in dimension one, Random and Computational Dynamics, 1 (1993), 277-305. [38] T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Springer-Verlag, New York, 1975. [39] S. Zaidman, Topics in Abstract Differential Equations II, Pitman Research Notes in Mathematics Series 321, Longman Group Limited, England, 1995. [40] H. Zhao and Z. Zheng, Random periodic solutions of random dynamical systems, J. Differential Equations, 246 (2009), 2020-2038. doi: 10.1016/j.jde.2008.10.011.
 [1] Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022 [2] Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757 [3] Yuncheng You. Random attractor for stochastic reversible Schnackenberg equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1347-1362. doi: 10.3934/dcdss.2014.7.1347 [4] Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028 [5] Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6425-6462. doi: 10.3934/dcdsb.2021026 [6] Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 [7] Chi Phan. Random attractor for stochastic Hindmarsh-Rose equations with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3233-3256. doi: 10.3934/dcdsb.2020060 [8] Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857 [9] Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022 [10] Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99 [11] Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210 [12] Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371 [13] Galina Kurina, Vladimir Zadorozhniy. Mean periodic solutions of a inhomogeneous heat equation with random coefficients. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1543-1551. doi: 10.3934/dcdss.2020087 [14] Julian Newman. Synchronisation of almost all trajectories of a random dynamical system. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4163-4177. doi: 10.3934/dcds.2020176 [15] Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441 [16] Xuping Zhang. Pullback random attractors for fractional stochastic $p$-Laplacian equation with delay and multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1695-1724. doi: 10.3934/dcdsb.2021107 [17] Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure and Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487 [18] Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385 [19] Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789 [20] Zhibo Cheng, Xiaoxiao Cui. Positive periodic solution for generalized Basener-Ross model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4361-4382. doi: 10.3934/dcdsb.2020101

2021 Impact Factor: 1.588