August  2015, 35(8): 3745-3769. doi: 10.3934/dcds.2015.35.3745

Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems

1. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Received  May 2014 Revised  December 2014 Published  February 2015

In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynamical systems. The existence and bifurcation of random periodic (random almost periodic, random almost automorphic) solutions have been established for a one-dimensional stochastic equation with multiplicative noise.
Citation: Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one,, Diffusion Processes and Related Problems in Analysis, 27 (1992), 241.   Google Scholar

[3]

L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems,, Advances in Nonlinear Stochastic Mechanics, 47 (1996), 19.  doi: 10.1007/978-94-009-0321-0_3.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[5]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1.  doi: 10.1142/S0219493706001621.  Google Scholar

[6]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Continuous Dynamical Systems, 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[8]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[9]

T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Anal., 74 (2011), 3671.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[10]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.   Google Scholar

[11]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Analysis, 11 (2003), 153.  doi: 10.1023/A:1022902802385.  Google Scholar

[12]

I. Chueshow, Monotone Random Systems-Theory and Applications,, Lecture Notes in Mathematics, 1779 (2002).  doi: 10.1007/b83277.  Google Scholar

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[14]

H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation,, J. Dyn. Diff. Eqns., 10 (1998), 259.  doi: 10.1023/A:1022665916629.  Google Scholar

[15]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133.  doi: 10.4310/CMS.2003.v1.n1.a9.  Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations,, Lecture Notes in Mathematics 377, (1974).   Google Scholar

[17]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, Stoch. Stoch. Rep., 59 (1996), 21.  doi: 10.1080/17442509608834083.  Google Scholar

[18]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[20]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[21]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).   Google Scholar

[22]

Q. Liu and Y. Wang, Phase-translation group actions on strongly monotone skew-product semiflows,, Transactions of American Mathematical Society, 364 (2012), 3781.  doi: 10.1090/S0002-9947-2012-05555-3.  Google Scholar

[23]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185.   Google Scholar

[24]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations,, Van Nostrand Reinhold, (1971).   Google Scholar

[25]

R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[26]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998), 1.  doi: 10.1090/memo/0647.  Google Scholar

[27]

W. Shen and Y. Yi, Dynamics of almost periodic scalar parabolic equations,, J. Differential Equations, 122 (1995), 114.  doi: 10.1006/jdeq.1995.1141.  Google Scholar

[28]

W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence,, J. Differential Equations, 122 (1995), 373.  doi: 10.1006/jdeq.1995.1152.  Google Scholar

[29]

W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures,, Trans. Amer. Math. Soc., 347 (1995), 4413.  doi: 10.1090/S0002-9947-1995-1311916-9.  Google Scholar

[30]

W. Shen and Y. Yi, Ergodicity of minimal sets in scalar parabolic equations,, J. Dynamics and Differential Equations, 8 (1996), 299.  doi: 10.1007/BF02218894.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise,, Discrete and Continuous Dynamical Systems Series A, 34 (2014), 269.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[34]

B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations,, Nonlinear Analysis TMA, 103 (2014), 9.  doi: 10.1016/j.na.2014.02.013.  Google Scholar

[35]

Y. Wang, Asymptotic symmetry in strongly monotone skew-product semiflows with applications,, Nonlinearity, 22 (2009), 765.  doi: 10.1088/0951-7715/22/4/005.  Google Scholar

[36]

J. R. Ward Jr., Bounded and almost periodic solutions of semi-linear parabolic equations,, Rocky Mountain Journal of Mathematics, 18 (1988), 479.  doi: 10.1216/RMJ-1988-18-2-479.  Google Scholar

[37]

K. Xu, Bifurcations of random differential equations in dimension one,, Random and Computational Dynamics, 1 (1993), 277.   Google Scholar

[38]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,, Springer-Verlag, (1975).   Google Scholar

[39]

S. Zaidman, Topics in Abstract Differential Equations II,, Pitman Research Notes in Mathematics Series 321, (1995).   Google Scholar

[40]

H. Zhao and Z. Zheng, Random periodic solutions of random dynamical systems,, J. Differential Equations, 246 (2009), 2020.  doi: 10.1016/j.jde.2008.10.011.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer Monographs in Mathematics, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

L. Arnold and P. Boxler, Stochastic bifurcation: instructive examples in dimension one,, Diffusion Processes and Related Problems in Analysis, 27 (1992), 241.   Google Scholar

[3]

L. Arnold and B. Schmalfuss, Fixed points and attractors for random dynamical systems,, Advances in Nonlinear Stochastic Mechanics, 47 (1996), 19.  doi: 10.1007/978-94-009-0321-0_3.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, North-Holland, (1992).   Google Scholar

[5]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stoch. Dyn., 6 (2006), 1.  doi: 10.1142/S0219493706001621.  Google Scholar

[6]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differential Equations, 246 (2009), 845.  doi: 10.1016/j.jde.2008.05.017.  Google Scholar

[7]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness,, Discrete Continuous Dynamical Systems, 21 (2008), 415.  doi: 10.3934/dcds.2008.21.415.  Google Scholar

[8]

T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 439.  doi: 10.3934/dcdsb.2010.14.439.  Google Scholar

[9]

T. Caraballo, M. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion,, Nonlinear Anal., 74 (2011), 3671.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[10]

T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems,, Dynamics of Continuous, 10 (2003), 491.   Google Scholar

[11]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors for nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Analysis, 11 (2003), 153.  doi: 10.1023/A:1022902802385.  Google Scholar

[12]

I. Chueshow, Monotone Random Systems-Theory and Applications,, Lecture Notes in Mathematics, 1779 (2002).  doi: 10.1007/b83277.  Google Scholar

[13]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Th. Re. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[14]

H. Crauel and F. Flandoli, Additive noise destroys a pitchfork bifurcation,, J. Dyn. Diff. Eqns., 10 (1998), 259.  doi: 10.1023/A:1022665916629.  Google Scholar

[15]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, Comm. Math. Sci., 1 (2003), 133.  doi: 10.4310/CMS.2003.v1.n1.a9.  Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations,, Lecture Notes in Mathematics 377, (1974).   Google Scholar

[17]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, Stoch. Stoch. Rep., 59 (1996), 21.  doi: 10.1080/17442509608834083.  Google Scholar

[18]

M. J. Garrido-Atienza and B. Schmalfuss, Ergodicity of the infinite dimensional fractional Brownian motion,, J. Dynam. Differential Equations, 23 (2011), 671.  doi: 10.1007/s10884-011-9222-5.  Google Scholar

[19]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, American Mathematical Society, (1988).   Google Scholar

[20]

J. Huang and W. Shen, Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains,, Discrete and Continuous Dynamical Systems, 24 (2009), 855.  doi: 10.3934/dcds.2009.24.855.  Google Scholar

[21]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations,, Cambridge University Press, (1982).   Google Scholar

[22]

Q. Liu and Y. Wang, Phase-translation group actions on strongly monotone skew-product semiflows,, Transactions of American Mathematical Society, 364 (2012), 3781.  doi: 10.1090/S0002-9947-2012-05555-3.  Google Scholar

[23]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior, (1992), 185.   Google Scholar

[24]

G. R. Sell, Topological Dynamics and Ordinary Differential Equations,, Van Nostrand Reinhold, (1971).   Google Scholar

[25]

R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[26]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Mem. Amer. Math. Soc., 136 (1998), 1.  doi: 10.1090/memo/0647.  Google Scholar

[27]

W. Shen and Y. Yi, Dynamics of almost periodic scalar parabolic equations,, J. Differential Equations, 122 (1995), 114.  doi: 10.1006/jdeq.1995.1141.  Google Scholar

[28]

W. Shen and Y. Yi, Asymptotic almost periodicity of scalar parabolic equations with almost periodic time dependence,, J. Differential Equations, 122 (1995), 373.  doi: 10.1006/jdeq.1995.1152.  Google Scholar

[29]

W. Shen and Y. Yi, On minimal sets of scalar parabolic equations with skew-product structures,, Trans. Amer. Math. Soc., 347 (1995), 4413.  doi: 10.1090/S0002-9947-1995-1311916-9.  Google Scholar

[30]

W. Shen and Y. Yi, Ergodicity of minimal sets in scalar parabolic equations,, J. Dynamics and Differential Equations, 8 (1996), 299.  doi: 10.1007/BF02218894.  Google Scholar

[31]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[32]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differential Equations, 253 (2012), 1544.  doi: 10.1016/j.jde.2012.05.015.  Google Scholar

[33]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise,, Discrete and Continuous Dynamical Systems Series A, 34 (2014), 269.  doi: 10.3934/dcds.2014.34.269.  Google Scholar

[34]

B. Wang, Existence, stability and bifurcation of random complete and periodic solutions of stochastic parabolic equations,, Nonlinear Analysis TMA, 103 (2014), 9.  doi: 10.1016/j.na.2014.02.013.  Google Scholar

[35]

Y. Wang, Asymptotic symmetry in strongly monotone skew-product semiflows with applications,, Nonlinearity, 22 (2009), 765.  doi: 10.1088/0951-7715/22/4/005.  Google Scholar

[36]

J. R. Ward Jr., Bounded and almost periodic solutions of semi-linear parabolic equations,, Rocky Mountain Journal of Mathematics, 18 (1988), 479.  doi: 10.1216/RMJ-1988-18-2-479.  Google Scholar

[37]

K. Xu, Bifurcations of random differential equations in dimension one,, Random and Computational Dynamics, 1 (1993), 277.   Google Scholar

[38]

T. Yoshizawa, Stability Theory and the Existence of Periodic Solutions and Almost Periodic Solutions,, Springer-Verlag, (1975).   Google Scholar

[39]

S. Zaidman, Topics in Abstract Differential Equations II,, Pitman Research Notes in Mathematics Series 321, (1995).   Google Scholar

[40]

H. Zhao and Z. Zheng, Random periodic solutions of random dynamical systems,, J. Differential Equations, 246 (2009), 2020.  doi: 10.1016/j.jde.2008.10.011.  Google Scholar

[1]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[2]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[3]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[4]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[5]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[6]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[7]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[8]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[9]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[10]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[11]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[12]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[13]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[14]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[15]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[16]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[17]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[18]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[19]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[20]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]