• Previous Article
    Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold
  • DCDS Home
  • This Issue
  • Next Article
    Global attractor for weakly damped gKdV equations in higher sobolev spaces
August  2015, 35(8): 3827-3855. doi: 10.3934/dcds.2015.35.3827

Continuous averaging proof of the Nekhoroshev theorem

1. 

Department of mathematics, the University of Chicago, Chicago, IL, 60637, United States

Received  August 2013 Revised  December 2014 Published  February 2015

In this paper we develop the continuous averaging method of Treschev to work on the simultaneous Diophantine approximation and apply the result to give a new proof of the Nekhoroshev theorem. We obtain a sharp normal form theorem and explicit estimates of the stability constants appearing in the Nekhoroshev theorem.
Citation: Jinxin Xue. Continuous averaging proof of the Nekhoroshev theorem. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3827-3855. doi: 10.3934/dcds.2015.35.3827
References:
[1]

A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians, Nonlinearity, 24 (2011), 97-112. doi: 10.1088/0951-7715/24/1/005.

[2]

A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Annals of Mathematics, 162 (2005), 1377-1389. doi: 10.4007/annals.2005.162.1377.

[3]

J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem, http://arxiv.org/abs/1109.2892.

[4]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.

[5]

P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, 47 (1992), 57-133. doi: 10.1070/RM1992v047n06ABEH000965.

[6]

P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for? Progress in nonlinear science., 1 RAS, Inst. Appl. Phys., Nizhnii (Novgorod, (2002), 116-138.

[7]

P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499. doi: 10.1063/1.165891.

[8]

P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times. Kuksin, S. (ed.) et al., Seminar on dynamical systems. Basel: Birkhäuser. Prog. Nonlinear Diff. Equ. Appl. 12 (1994), 15-34.

[9]

L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity, 9 (1996), 1703-1751. doi: 10.1088/0951-7715/9/6/017.

[10]

N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 5-66, 287.

[11]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Mathematische Zeitschrift, 213 (1993), 187-216. doi: 10.1007/BF03025718.

[12]

A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems, Regular and Chaotic Dynamics, 5 (2000), 157-170. doi: 10.1070/rd2000v005n02ABEH000138.

[13]

D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-03028-4.

[14]

D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions, Regular and Chaotic Dynamics, 2 (1997), 9-20.

[15]

D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98.

show all references

References:
[1]

A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians, Nonlinearity, 24 (2011), 97-112. doi: 10.1088/0951-7715/24/1/005.

[2]

A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Annals of Mathematics, 162 (2005), 1377-1389. doi: 10.4007/annals.2005.162.1377.

[3]

J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem, http://arxiv.org/abs/1109.2892.

[4]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Inventiones Math., 167 (2007), 445-453. doi: 10.1007/s00222-006-0020-3.

[5]

P. Lochak, Canonical perturbation theory via simultaneous approximation, Russian Mathematical Surveys, 47 (1992), 57-133. doi: 10.1070/RM1992v047n06ABEH000965.

[6]

P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for? Progress in nonlinear science., 1 RAS, Inst. Appl. Phys., Nizhnii (Novgorod, (2002), 116-138.

[7]

P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian, Chaos, 2 (1992), 495-499. doi: 10.1063/1.165891.

[8]

P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times. Kuksin, S. (ed.) et al., Seminar on dynamical systems. Basel: Birkhäuser. Prog. Nonlinear Diff. Equ. Appl. 12 (1994), 15-34.

[9]

L. Niederman, Stability over exponentially long times in the planetary problem, Nonlinearity, 9 (1996), 1703-1751. doi: 10.1088/0951-7715/9/6/017.

[10]

N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems, Russ. Math. Surv., 32 (1977), 5-66, 287.

[11]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Mathematische Zeitschrift, 213 (1993), 187-216. doi: 10.1007/BF03025718.

[12]

A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems, Regular and Chaotic Dynamics, 5 (2000), 157-170. doi: 10.1070/rd2000v005n02ABEH000138.

[13]

D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-03028-4.

[14]

D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions, Regular and Chaotic Dynamics, 2 (1997), 9-20.

[15]

D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point, Russian J. Math. Phys., 5 (1997), 63-98.

[1]

Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125

[2]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[3]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[4]

Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear Klein-Gordon equation with potential. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3573-3594. doi: 10.3934/dcdsb.2017215

[5]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

[6]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[7]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[8]

Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51

[9]

Janusz Mierczyński. Averaging in random systems of nonnegative matrices. Conference Publications, 2015, 2015 (special) : 835-840. doi: 10.3934/proc.2015.0835

[10]

Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555

[11]

Mickael Chekroun, Michael Ghil, Jean Roux, Ferenc Varadi. Averaging of time - periodic systems without a small parameter. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 753-782. doi: 10.3934/dcds.2006.14.753

[12]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[13]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[14]

Susanna Terracini, Juncheng Wei. DCDS-A Special Volume Qualitative properties of solutions of nonlinear elliptic equations and systems. Preface. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : i-ii. doi: 10.3934/dcds.2014.34.6i

[15]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[16]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure and Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[17]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[18]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[19]

Miguel Rodríguez-Olmos. Continuous singularities in hamiltonian relative equilibria with abelian momentum isotropy. Journal of Geometric Mechanics, 2020, 12 (3) : 525-540. doi: 10.3934/jgm.2020019

[20]

D. P. Demuner, M. Federson, C. Gutierrez. The Poincaré-Bendixson Theorem on the Klein bottle for continuous vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 495-509. doi: 10.3934/dcds.2009.25.495

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]