• Previous Article
    Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold
  • DCDS Home
  • This Issue
  • Next Article
    Global attractor for weakly damped gKdV equations in higher sobolev spaces
August  2015, 35(8): 3827-3855. doi: 10.3934/dcds.2015.35.3827

Continuous averaging proof of the Nekhoroshev theorem

1. 

Department of mathematics, the University of Chicago, Chicago, IL, 60637, United States

Received  August 2013 Revised  December 2014 Published  February 2015

In this paper we develop the continuous averaging method of Treschev to work on the simultaneous Diophantine approximation and apply the result to give a new proof of the Nekhoroshev theorem. We obtain a sharp normal form theorem and explicit estimates of the stability constants appearing in the Nekhoroshev theorem.
Citation: Jinxin Xue. Continuous averaging proof of the Nekhoroshev theorem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3827-3855. doi: 10.3934/dcds.2015.35.3827
References:
[1]

A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians,, Nonlinearity, 24 (2011), 97.  doi: 10.1088/0951-7715/24/1/005.  Google Scholar

[2]

A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Annals of Mathematics, 162 (2005), 1377.  doi: 10.4007/annals.2005.162.1377.  Google Scholar

[3]

J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem,, , ().   Google Scholar

[4]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Inventiones Math., 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[5]

P. Lochak, Canonical perturbation theory via simultaneous approximation,, Russian Mathematical Surveys, 47 (1992), 57.  doi: 10.1070/RM1992v047n06ABEH000965.  Google Scholar

[6]

P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for?, Progress in nonlinear science., 1 (2002), 116.   Google Scholar

[7]

P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian,, Chaos, 2 (1992), 495.  doi: 10.1063/1.165891.  Google Scholar

[8]

P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times., Kuksin, 12 (1994), 15.   Google Scholar

[9]

L. Niederman, Stability over exponentially long times in the planetary problem,, Nonlinearity, 9 (1996), 1703.  doi: 10.1088/0951-7715/9/6/017.  Google Scholar

[10]

N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems,, Russ. Math. Surv., 32 (1977), 5.   Google Scholar

[11]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems,, Mathematische Zeitschrift, 213 (1993), 187.  doi: 10.1007/BF03025718.  Google Scholar

[12]

A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems,, Regular and Chaotic Dynamics, 5 (2000), 157.  doi: 10.1070/rd2000v005n02ABEH000138.  Google Scholar

[13]

D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems,, Springer Monographs in Mathematics. Springer-Verlag, (2010).  doi: 10.1007/978-3-642-03028-4.  Google Scholar

[14]

D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions,, Regular and Chaotic Dynamics, 2 (1997), 9.   Google Scholar

[15]

D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russian J. Math. Phys., 5 (1997), 63.   Google Scholar

show all references

References:
[1]

A. Bounemoura and J.-P. Marco, Improved exponential stability for near-integrable quasi-convex Hamiltonians,, Nonlinearity, 24 (2011), 97.  doi: 10.1088/0951-7715/24/1/005.  Google Scholar

[2]

A. Córdoba, D. Córdoba and M. Fontelos, Formation of singularities for a transport equation with nonlocal velocity,, Annals of Mathematics, 162 (2005), 1377.  doi: 10.4007/annals.2005.162.1377.  Google Scholar

[3]

J. Féjoz, M. Guardia, V. Kaloshin and P. Raldan, Kirkwood gaps and diffusion along mean motion resonance in the restricted planar three-body problem,, , ().   Google Scholar

[4]

A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation,, Inventiones Math., 167 (2007), 445.  doi: 10.1007/s00222-006-0020-3.  Google Scholar

[5]

P. Lochak, Canonical perturbation theory via simultaneous approximation,, Russian Mathematical Surveys, 47 (1992), 57.  doi: 10.1070/RM1992v047n06ABEH000965.  Google Scholar

[6]

P. Lochak, Simultaneous Diophantine approximation in classical perturbation theory: Why and what for?, Progress in nonlinear science., 1 (2002), 116.   Google Scholar

[7]

P. Lochak and A. I. Neishtadt, Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian,, Chaos, 2 (1992), 495.  doi: 10.1063/1.165891.  Google Scholar

[8]

P. Lochak, A. I. Neishtadt and L. Niederman, Stability of nearly integrable convex Hamiltonian systems over exponentially long times., Kuksin, 12 (1994), 15.   Google Scholar

[9]

L. Niederman, Stability over exponentially long times in the planetary problem,, Nonlinearity, 9 (1996), 1703.  doi: 10.1088/0951-7715/9/6/017.  Google Scholar

[10]

N. Nekhorochev, An exponential estimate of the time of stability of nearly integrable Hamiltonian systems,, Russ. Math. Surv., 32 (1977), 5.   Google Scholar

[11]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems,, Mathematische Zeitschrift, 213 (1993), 187.  doi: 10.1007/BF03025718.  Google Scholar

[12]

A. Pronin and D. Treschev, Continuous averaging in multi-frequency slow-fast systems,, Regular and Chaotic Dynamics, 5 (2000), 157.  doi: 10.1070/rd2000v005n02ABEH000138.  Google Scholar

[13]

D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems,, Springer Monographs in Mathematics. Springer-Verlag, (2010).  doi: 10.1007/978-3-642-03028-4.  Google Scholar

[14]

D. V. Treschev, The continuous averaging method in the problem of separation of fast and slow motions,, Regular and Chaotic Dynamics, 2 (1997), 9.   Google Scholar

[15]

D. Treschev, Separatrix splitting for a pendulum with rapidly oscillating suspension point,, Russian J. Math. Phys., 5 (1997), 63.   Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[3]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[4]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[5]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[6]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[7]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[8]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[9]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[10]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[12]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[13]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[14]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[15]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[16]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[17]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[18]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[19]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[20]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]