Citation: |
[1] |
J.-P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser Boston, Inc., Boston, Basel, Berlin, 1990. |
[2] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications. Boston, Birkhäuser, 1997.doi: 10.1007/978-0-8176-4755-1. |
[3] |
M. Bardi and P. Soravia, A comparison result for Hamilton-Jacobi equations and applications to some differential games lacking controllability, Funkcial. Ekvac., 37 (1994), 19-43. |
[4] |
G. Barles, Solutions de Viscosité des Équations de Hamilton-Jacobi, (French) [Viscosity solutions of Hamilton-Jacobi equations], Mathématiques & Applications, no. 17, Paris, Springer-Verlag, 1994. |
[5] |
E. N. Barron, The Pontryagin maximum principle for minimax problems of optimal control, Nonlinear Anal., 15 (1990), 1155-1165.doi: 10.1016/0362-546X(90)90051-H. |
[6] |
E. N. Barron, Viscosity solutions and analysis in $L^{\infty}$, Nonlinear Analysis, Differential Equations and Control, (Montreal, QC, 1998) (F. Clarke and R. J. Stern, eds.), NATO Sci. Ser. C Math. Phys. Sci., vol. 528, Kluwer Academic Publishers, DorFdrecht, (1999), 1-60. |
[7] |
E. N. Barron and H. Ishii, The Bellman equation for minimizing the maximum cost, Nonlinear Anal., Theory Methods Appl., 13 (1989), 1067-1090.doi: 10.1016/0362-546X(89)90096-5. |
[8] |
P. Bettiol, P. Cardaliaguet and M. Quincampoix, Zero-sum state constrained differential games: Existence of value for Bolza problem, Int. J. Game Theory, 34 (2006), 495-527.doi: 10.1007/s00182-006-0030-9. |
[9] |
P. Bettiol and F. Rampazzo, ($L^\infty$ + Bolza) control problems as dynamic differential games, Nonlinear Differ. Equ. Appl., 20 (2013), 895-918.doi: 10.1007/s00030-012-0186-x. |
[10] |
P. Bettiol, H. Frankowska and R. B. Vinter, $L^{\infty}$ estimates on trajectories confined to a closed subset, J. Differential Eq., 252 (2012), 1912-1933.doi: 10.1016/j.jde.2011.09.007. |
[11] |
P. Bettiol and R. B. Vinter, Trajectories satisfying a smooth state constraint: Improved estimates, IEEE TAC, 56 (2011), 1090-1096.doi: 10.1109/TAC.2010.2088670. |
[12] |
P. Bettiol and R. B. Vinter, Estimates on trajectories in a closed set with corners for (t,x) dependent data, Mathematical Control and Related Fields, 3 (2013), 245-267.doi: 10.3934/mcrf.2013.3.245. |
[13] |
P. Bettiol and R. B. Vinter, Refined estimates on trajectories of state constrained control problems, Preprint. |
[14] |
S. C. Di Marco and R. L. V. González, Minimax optimal control problems. Numerical analysis of the finite horizon case, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 23-54.doi: 10.1051/m2an:1999103. |
[15] |
S. C. Di Marco and R. L. V. González, On a system of Hamilton-Jacobi-Bellman inequalities associated to a minimax problem with additive final cost, International Journal of Mathematics and Mathematical Sciences Issue, (2003), 4517-4538.doi: 10.1155/S0161171203302108. |
[16] |
L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations, Indiana Un. Math.J., 33 (1984), 773-797.doi: 10.1512/iumj.1984.33.33040. |
[17] |
I. J. Fialho and T. T. Georgiou, Worst case analysis of nonlinear systems, IEEE Trans. Autom. Control, 44 (1999), 1180-1196.doi: 10.1109/9.769372. |
[18] |
H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints, Nonlinear Differ. Equ. Appl., 20 (2013), 361-383.doi: 10.1007/s00030-012-0183-0. |
[19] |
H. Frankowska and F. Rampazzo, Filippov's and Filippov-Wazewski's theorems on closed domains, J. Differential Eq., 161 (2000), 449-478.doi: 10.1006/jdeq.2000.3711. |
[20] |
J. Lygeros, On reachability and minimum cost optimal control, Automatica, 40 (2004), 917-927.doi: 10.1016/j.automatica.2004.01.012. |
[21] |
F. Rampazzo, Differential games with unbounded versus bounded controls, SIAM J. Control Optim., 36 (1998), 814-839.doi: 10.1137/S0363012995294602. |
[22] |
F. Rampazzo, Continuity of the upper and lower value of slow growth differential games, J. Math. Anal. Appl., 213 (1997), 15-31.doi: 10.1006/jmaa.1997.5327. |
[23] |
O. Serea, Discontinuity differential games and control systems with supremum cost, J. Math. Anal. Appl., 270 (2002), 519-542.doi: 10.1016/S0022-247X(02)00087-2. |
[24] |
R. B. Vinter, Minimax optimal control, SIAM J. Control Optim., 44 (2005), 939-968.doi: 10.1137/S0363012902415244. |
[25] |
J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York-London, 1972. |