-
Previous Article
On the $\Gamma$-limit for a non-uniformly bounded sequence of two-phase metric functionals
- DCDS Home
- This Issue
-
Next Article
Symplectic groupoids and discrete constrained Lagrangian mechanics
Optimal Liouville-type theorems for a parabolic system
1. | Institute of Research and Development, Duy Tan University, Da Nang, Vietnam |
References:
[1] |
K. Ammar and P. Souplet, Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source, Discrete Contin. Dyn. Syst., 26 (2010), 665-689.
doi: 10.3934/dcds.2010.26.665. |
[2] |
T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, P. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 219-247.
doi: 10.4171/JEMS/250. |
[4] |
M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Équations aux Dérivées Partielles et Applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, 189-198. |
[5] |
M.-F. Bidaut-Véron and T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.
doi: 10.1080/03605309608821217. |
[6] |
E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009. |
[7] |
E. N. Dancer and T. Weth, Liouville-type results for non-cooperative elliptic systems in a half-space, J. Lond. Math. Soc. (2), 86 (2012), 111-128.
doi: 10.1112/jlms/jdr080. |
[8] |
Y. Guo, B. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents, J. Diff. Equations, 256 (2014), 3463-3495.
doi: 10.1016/j.jde.2014.02.007. |
[9] |
P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[10] |
P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.
doi: 10.1512/iumj.2007.56.2911. |
[11] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. |
[12] |
P. Quittner and P. Souplet, Parabolic Liouville-type theorems via their elliptic counterparts, Discrete Contin. Dyn. Syst., suppl. (2011), 1206-1213.
doi: 10.3934/proc.2011.2011.1206. |
[13] |
P. Quittner and P. Souplet, Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications, Comm. Math. Phys., 311 (2012), 1-19.
doi: 10.1007/s00220-012-1440-0. |
[14] |
H. Tavares, S. Terracini, G. Verzini and T. Weth, Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems, Comm. Partial Differential Equations, 36 (2011), 1988-2010.
doi: 10.1080/03605302.2011.574244. |
[15] |
J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106.
doi: 10.1007/s00205-008-0121-9. |
show all references
References:
[1] |
K. Ammar and P. Souplet, Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source, Discrete Contin. Dyn. Syst., 26 (2010), 665-689.
doi: 10.3934/dcds.2010.26.665. |
[2] |
T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.
doi: 10.1007/s00526-009-0265-y. |
[3] |
T. Bartsch, P. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 219-247.
doi: 10.4171/JEMS/250. |
[4] |
M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Équations aux Dérivées Partielles et Applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, 189-198. |
[5] |
M.-F. Bidaut-Véron and T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.
doi: 10.1080/03605309608821217. |
[6] |
E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.
doi: 10.1016/j.anihpc.2010.01.009. |
[7] |
E. N. Dancer and T. Weth, Liouville-type results for non-cooperative elliptic systems in a half-space, J. Lond. Math. Soc. (2), 86 (2012), 111-128.
doi: 10.1112/jlms/jdr080. |
[8] |
Y. Guo, B. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents, J. Diff. Equations, 256 (2014), 3463-3495.
doi: 10.1016/j.jde.2014.02.007. |
[9] |
P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.
doi: 10.1215/S0012-7094-07-13935-8. |
[10] |
P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.
doi: 10.1512/iumj.2007.56.2911. |
[11] |
P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007. |
[12] |
P. Quittner and P. Souplet, Parabolic Liouville-type theorems via their elliptic counterparts, Discrete Contin. Dyn. Syst., suppl. (2011), 1206-1213.
doi: 10.3934/proc.2011.2011.1206. |
[13] |
P. Quittner and P. Souplet, Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications, Comm. Math. Phys., 311 (2012), 1-19.
doi: 10.1007/s00220-012-1440-0. |
[14] |
H. Tavares, S. Terracini, G. Verzini and T. Weth, Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems, Comm. Partial Differential Equations, 36 (2011), 1988-2010.
doi: 10.1080/03605302.2011.574244. |
[15] |
J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106.
doi: 10.1007/s00205-008-0121-9. |
[1] |
Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035 |
[2] |
Kui Li, Zhitao Zhang. Liouville-type theorem for higher-order Hardy-Hénon system. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3851-3869. doi: 10.3934/cpaa.2021134 |
[3] |
Shigeru Sakaguchi. A Liouville-type theorem for some Weingarten hypersurfaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 887-895. doi: 10.3934/dcdss.2011.4.887 |
[4] |
Frank Arthur, Xiaodong Yan. A Liouville-type theorem for higher order elliptic systems of Hé non-Lane-Emden type. Communications on Pure and Applied Analysis, 2016, 15 (3) : 807-830. doi: 10.3934/cpaa.2016.15.807 |
[5] |
Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184 |
[6] |
Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711 |
[7] |
Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317 |
[8] |
Pavol Quittner, Philippe Souplet. Parabolic Liouville-type theorems via their elliptic counterparts. Conference Publications, 2011, 2011 (Special) : 1206-1213. doi: 10.3934/proc.2011.2011.1206 |
[9] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[10] |
Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic and Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883 |
[11] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[12] |
J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176 |
[13] |
Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605 |
[14] |
Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure and Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511 |
[15] |
Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723 |
[16] |
Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469 |
[17] |
Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 |
[18] |
Haiyan Wang, Carlos Castillo-Chavez. Spreading speeds and traveling waves for non-cooperative integro-difference systems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2243-2266. doi: 10.3934/dcdsb.2012.17.2243 |
[19] |
Yang Liu, Zhiying Liu, Kaifei Xu. Imitative innovation or independent innovation strategic choice of emerging economies in non-cooperative innovation competition. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022023 |
[20] |
Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]