\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal Liouville-type theorems for a parabolic system

Abstract Related Papers Cited by
  • We prove Liouville-type theorems for a parabolic system in dimension $N=1$ and for radial solutions in all dimensions under an optimal Sobolev growth restriction on the nonlinearities. This seems to be the first example of a Liouville-type theorem in the whole Sobolev subcritical range for a parabolic system (even for radial solutions). Moreover, this also seems to be the first application of the Gidas-Spruck technique to a parabolic system.
    Mathematics Subject Classification: Primary: 35B53, 35B33; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Ammar and P. Souplet, Liouville-type theorems and universal bounds for nonnegative solutions of the porous medium equation with source, Discrete Contin. Dyn. Syst., 26 (2010), 665-689.doi: 10.3934/dcds.2010.26.665.

    [2]

    T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differential Equations, 37 (2010), 345-361.doi: 10.1007/s00526-009-0265-y.

    [3]

    T. Bartsch, P. Poláčik and P. Quittner, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc. (JEMS), 13 (2011), 219-247.doi: 10.4171/JEMS/250.

    [4]

    M.-F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, in Équations aux Dérivées Partielles et Applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, 189-198.

    [5]

    M.-F. Bidaut-Véron and T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Comm. Partial Differential Equations, 21 (1996), 1035-1086.doi: 10.1080/03605309608821217.

    [6]

    E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953-969.doi: 10.1016/j.anihpc.2010.01.009.

    [7]

    E. N. Dancer and T. Weth, Liouville-type results for non-cooperative elliptic systems in a half-space, J. Lond. Math. Soc. (2), 86 (2012), 111-128.doi: 10.1112/jlms/jdr080.

    [8]

    Y. Guo, B. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents, J. Diff. Equations, 256 (2014), 3463-3495.doi: 10.1016/j.jde.2014.02.007.

    [9]

    P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579.doi: 10.1215/S0012-7094-07-13935-8.

    [10]

    P. Poláčik, P. Quittner and P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908.doi: 10.1512/iumj.2007.56.2911.

    [11]

    P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2007.

    [12]

    P. Quittner and P. Souplet, Parabolic Liouville-type theorems via their elliptic counterparts, Discrete Contin. Dyn. Syst., suppl. (2011), 1206-1213.doi: 10.3934/proc.2011.2011.1206.

    [13]

    P. Quittner and P. Souplet, Optimal Liouville-type theorems for noncooperative elliptic Schrödinger systems and applications, Comm. Math. Phys., 311 (2012), 1-19.doi: 10.1007/s00220-012-1440-0.

    [14]

    H. Tavares, S. Terracini, G. Verzini and T. Weth, Existence and nonexistence of entire solutions for non-cooperative cubic elliptic systems, Comm. Partial Differential Equations, 36 (2011), 1988-2010.doi: 10.1080/03605302.2011.574244.

    [15]

    J. Wei and T. Weth, Radial solutions and phase separation in a system of two coupled Schrödinger equations, Arch. Ration. Mech. Anal., 190 (2008), 83-106.doi: 10.1007/s00205-008-0121-9.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(110) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return