-
Previous Article
Integrability methods in the time minimal coherence transfer for Ising chains of three spins
- DCDS Home
- This Issue
-
Next Article
Value iteration convergence of $\epsilon$-monotone schemes for stationary Hamilton-Jacobi equations
(Un)conditional consensus emergence under perturbed and decentralized feedback controls
1. | Technische Universität München, Fakultät Mathematik, Boltzmannstraße 3, D-85748 Garching, Germany |
2. | Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz |
References:
[1] |
L. Bakule, Decentralized control: An overview, Annu. Rev. Control, 32 (2008), 87-98.
doi: 10.1016/j.arcontrol.2008.03.004. |
[2] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105. |
[3] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521-564.
doi: 10.1142/S0218202515400059. |
[4] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, (2010), 297-336.
doi: 10.1007/978-0-8176-4946-3_12. |
[5] |
F. Cucker and C. Huepe, Flocking with informed agents, MathS In Action, 1 (2008), 1-25.
doi: 10.5802/msia.1. |
[6] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[7] |
F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[8] |
A. Filipov, Differential Equations with Discontinuous Righthand Sides, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[9] |
M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM, Control Optim. Calc. Var., 20 (2014), 1123-1152.
doi: 10.1051/cocv/2014009. |
[10] |
S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction, J. Phys. A: Math. Theor.l, 43 (2010), 315201, 19 pp.
doi: 10.1088/1751-8113/43/31/315201. |
[11] |
S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683.
doi: 10.1109/TAC.2010.2046113. |
[12] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simulat., 5 (2002), 1-24. |
[13] |
P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks, Springer, 2013.
doi: 10.1007/978-1-4471-4147-1. |
[14] |
R. M. Murray, Recent research in cooperative control of multivehicle systems, J. Dyn. Syst. Meas. Control , 129 (2007), 571-583.
doi: 10.1115/1.2766721. |
[15] |
R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533.
doi: 10.1109/TAC.2004.834113. |
[16] |
A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays, Automatica, 50 (2014), 64-74.
doi: 10.1016/j.automatica.2013.09.034. |
[17] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, SIGGRAPH Comput. Graph., 21 (1987), 25-34.
doi: 10.1145/37401.37406. |
[18] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
show all references
References:
[1] |
L. Bakule, Decentralized control: An overview, Annu. Rev. Control, 32 (2008), 87-98.
doi: 10.1016/j.arcontrol.2008.03.004. |
[2] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci. U.S.A., 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105. |
[3] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse Stabilization and Control of Alignment Models, Math. Mod. Meth. Appl. Sci. (M3AS), 25 (2015), 521-564.
doi: 10.1142/S0218202515400059. |
[4] |
J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi, G. Toscani and N. Bellomo), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, (2010), 297-336.
doi: 10.1007/978-0-8176-4946-3_12. |
[5] |
F. Cucker and C. Huepe, Flocking with informed agents, MathS In Action, 1 (2008), 1-25.
doi: 10.5802/msia.1. |
[6] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842. |
[7] |
F. Cucker and S. Smale, On the mathematics of emergence, Jpn. J. Math., 2 (2007), 197-227.
doi: 10.1007/s11537-007-0647-x. |
[8] |
A. Filipov, Differential Equations with Discontinuous Righthand Sides, Volume 18 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1988.
doi: 10.1007/978-94-015-7793-9. |
[9] |
M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM, Control Optim. Calc. Var., 20 (2014), 1123-1152.
doi: 10.1051/cocv/2014009. |
[10] |
S.-Y. Ha, T. Ha and J.-H. Kim, Asymptotic dynamics for the cucker-smale-type model with the rayleigh friction, J. Phys. A: Math. Theor.l, 43 (2010), 315201, 19 pp.
doi: 10.1088/1751-8113/43/31/315201. |
[11] |
S.-Y. Ha, T. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings, IEEE Trans. Automat. Control, 55 (2010), 1679-1683.
doi: 10.1109/TAC.2010.2046113. |
[12] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simulat., 5 (2002), 1-24. |
[13] |
P. Ignaciuk and A. Bartoszewicz, Congestion Control in Data Transmission Networks, Springer, 2013.
doi: 10.1007/978-1-4471-4147-1. |
[14] |
R. M. Murray, Recent research in cooperative control of multivehicle systems, J. Dyn. Syst. Meas. Control , 129 (2007), 571-583.
doi: 10.1115/1.2766721. |
[15] |
R. Olfati-Saber and R. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Autom. Control, 49 (2004), 1520-1533.
doi: 10.1109/TAC.2004.834113. |
[16] |
A. A. Peters, R. H. Middleton and O. Mason, Leader tracking in homogeneous vehicle platoons with broadcast delays, Automatica, 50 (2014), 64-74.
doi: 10.1016/j.automatica.2013.09.034. |
[17] |
C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, SIGGRAPH Comput. Graph., 21 (1987), 25-34.
doi: 10.1145/37401.37406. |
[18] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226. |
[1] |
Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control and Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447 |
[2] |
Rui Li, Yingjing Shi. Finite-time optimal consensus control for second-order multi-agent systems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 929-943. doi: 10.3934/jimo.2014.10.929 |
[3] |
Seung-Yeal Ha, Jinwook Jung, Peter Kuchling. Emergence of anomalous flocking in the fractional Cucker-Smale model. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5465-5489. doi: 10.3934/dcds.2019223 |
[4] |
Mei Luo, Jinrong Wang, Yumei Liao. Bounded consensus of double-integrator stochastic multi-agent systems. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022088 |
[5] |
Richard Carney, Monique Chyba, Chris Gray, George Wilkens, Corey Shanbrom. Multi-agent systems for quadcopters. Journal of Geometric Mechanics, 2022, 14 (1) : 1-28. doi: 10.3934/jgm.2021005 |
[6] |
Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111 |
[7] |
Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489 |
[8] |
Yibo Zhang, Jinfeng Gao, Jia Ren, Huijiao Wang. A type of new consensus protocol for two-dimension multi-agent systems. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 345-357. doi: 10.3934/naco.2017022 |
[9] |
Ke Yang, Wencheng Zou, Zhengrong Xiang, Ronghao Wang. Fully distributed consensus for higher-order nonlinear multi-agent systems with unmatched disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1535-1551. doi: 10.3934/dcdss.2020396 |
[10] |
Xiaojin Huang, Hongfu Yang, Jianhua Huang. Consensus stability analysis for stochastic multi-agent systems with multiplicative measurement noises and Markovian switching topologies. Numerical Algebra, Control and Optimization, 2022, 12 (3) : 601-610. doi: 10.3934/naco.2021024 |
[11] |
Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168 |
[12] |
Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195 |
[13] |
Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023 |
[14] |
Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020 |
[15] |
Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379 |
[16] |
Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005 |
[17] |
Daniel Lear, David N. Reynolds, Roman Shvydkoy. Grassmannian reduction of cucker-smale systems and dynamical opinion games. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5765-5787. doi: 10.3934/dcds.2021095 |
[18] |
Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic and Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034 |
[19] |
Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1 |
[20] |
Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic and Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]