Citation: |
[1] |
M. Bardi, A boundary value problem for the minimum-time function, SIAM J. Control Optim., 27 (1989), 776-785.doi: 10.1137/0327041. |
[2] |
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser, Boston, 1997.doi: 10.1007/978-0-8176-4755-1. |
[3] |
M. Bardi and M. Falcone, An approximation scheme for the minimum time function, SIAM J. Control Optim., 28 (1990), 950-965.doi: 10.1137/0328053. |
[4] |
M. Bardi and M. Falcone, Discrete approximation of the minimal time function for systems with regular optimal trajectories, Analysis and optimization of systems (Antibes, 1990), Lecture Notes in Control and Inform. Sci., Springer, Berlin, 144 (1990), 103-112.doi: 10.1007/BFb0120033. |
[5] |
G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems, RAIRO Modél. Math. Anal. Numér., 21 (1987), 557-579. |
[6] |
P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Birkhäuser, 2004. |
[7] |
F. Clarke, Discontinuous Feedback and Nonlinear Systems, Proc. IFAC Conf. Nonlinear Control (NOLCOS), Bologna, (2010), 1-29. |
[8] |
F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998. |
[9] |
M. Falcone, Numerical solution of Dynamic programming equations, Appendix A in the volume M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Birkhäuser, Boston, 1997. |
[10] |
M. Falcone, Numerical methods for differential games based on partial differential equations, Int. Game Theory Rev., 8 (2006), 231-272.doi: 10.1142/S0219198906000886. |
[11] |
M. Falcone and R. Ferretti, Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations, Numer. Math., 67 (1994), 315-344.doi: 10.1007/s002110050031. |
[12] |
M. Falcone and R. Ferretti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations, SIAM, 2014.doi: 10.1137/1.9781611973051. |
[13] |
H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.doi: 10.1090/S0002-9947-1959-0110078-1. |
[14] |
R. Ferretti, High-Order Approximations of Linear Control Systems via Runge-Kutta Schemes, Computing, 58 (1997), 351-364.doi: 10.1007/BF02684347. |
[15] |
L. Grüne and P. E. Kloeden, Higher order numerical schemes for affinely controlled nonlinear systems, Numer. Math., 89 (2001), 669-690.doi: 10.1007/s002110000279. |
[16] |
E. Hairer, S. P. Nørsett and G. Wanner, Solving Ordinary Differential Equations I, Springer, 1993. |
[17] |
A. Marigonda, Second order conditions for the controllability of nonlinear systems with drift, Commun. Pur. Appl. Anal., 5 (2006), 861-885.doi: 10.3934/cpaa.2006.5.861. |
[18] |
A. Marigonda and S. Rigo, Controllability of some nonlinear systems with drift via generalized curvature properties, SIAM J. Control, 53 (2014), 434-474.doi: 10.1137/130920691. |
[19] |
C. Nour, R. J. Stern and J. Takche , Proximal smoothness and the exterior sphere condition, J. Convex Anal., 16 (2009), 501-514. |
[20] |
B. Piccoli and H. Sussmann, Regular synthesis and sufficiency conditions for optimality, SIAM J. Control Optim., 39 (2000), 359-410.doi: 10.1137/S0363012999322031. |
[21] |
P. Soravia, Estimates of convergence of fully discrete schemes for the Isaacs equation of pursuit-evasion differential games via maximum principle, SIAM J. Control Optim., 36 (1998), 1-11.doi: 10.1137/S0363012995291865. |
[22] |
M. Valadier, Quelques problèmes d'entraînement unilateral en dimension finie. (French) [Some problems of unilateral dragging in finite dimensions] Sém. Anal. Convexe, 18 (Montpellier, 1988), Exp. No. 8, 21 pp., Univ. Sci. Tech. Languedoc. |