• Previous Article
    Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem
  • DCDS Home
  • This Issue
  • Next Article
    Adaptive time--mesh refinement in optimal control problems with state constraints
September  2015, 35(9): 4573-4592. doi: 10.3934/dcds.2015.35.4573

When are minimizing controls also minimizing relaxed controls?

1. 

Imperial College London, Electrical and Electronical Engineering Department, South Kensington Campus, London SW7 2AZ, United Kingdom, United Kingdom

Received  May 2014 Published  April 2015

Relaxation refers to the procedure of enlarging the domain of a variational problem or the search space for the solution of a set of equations, to guarantee the existence of solutions. In optimal control theory relaxation involves replacing the set of permissible velocities in the dynamic constraint by its convex hull. Usually the infimum cost is the same for the original optimal control problem and its relaxation. But it is possible that the relaxed infimum cost is strictly less than the infimum cost. It is important to identify such situations, because then we can no longer study the infimum cost by solving the relaxed problem and evaluating the cost of the relaxed minimizer. Following on from earlier work by Warga, we explore the relation between the existence of an infimum gap and abnormality of necessary conditions (i.e. they are valid with the cost multiplier set to zero). Two kinds of theorems are proved. One asserts that a local minimizer, which is not also a relaxed minimizer, satisfies an abnormal form of the Pontryagin Maximum Principle. The other asserts that a local relaxed minimizer that is not also a minimizer satisfies an abnormal form of the relaxed Pontryagin Maximum Principle.
Citation: Michele Palladino, Richard B. Vinter. When are minimizing controls also minimizing relaxed controls?. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4573-4592. doi: 10.3934/dcds.2015.35.4573
References:
[1]

F. H. Clarke, The maximum principle under minimal hypotheses, SIAM J. Control and Optim., 14 (1976), 1078-1091. doi: 10.1137/0314067.

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983, reprinted as vol. 5 of Classics in Applied Mathematics, SIAM, Philadelphia, 1990.

[3]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics Vol. 178, Springer Verlag, New York, 1998.

[4]

A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A View from Variational Analysis, Monographs in Mathematics, Springer, Berlin 2009. doi: 10.1007/978-0-387-87821-8.

[5]

A. Ioffe, Euler lagrange and hamiltonian formalisms in dynamic optimization, Trans. Amer. Math. Soc., 349 (1997), 2871-2900. doi: 10.1090/S0002-9947-97-01795-9.

[6]

A. Ioffe, Optimal control of differential inclusions: New developments and open problems, Proc. 41 IEEE Conference on Decision and Control, 3 (2002), 3127-3132. doi: 10.1109/CDC.2002.1184349.

[7]

M. Palladino and R. B. Vinter, Minimizers that are not also relaxed minimizers, SIAM J. Control and Optim., 52 (2014), 2164-2179. doi: 10.1137/130909627.

[8]

T. T. Rockafellar and J.-B. Wets, Variational Analysis, Grundlehren er Mathematischen Wissenshaft, vol. 317, Springer Verlag, New York, 1998. doi: 10.1007/978-3-642-02431-3.

[9]

R. B. Vinter, Optimal Control, Birkhäuser, Boston, 2000.

[10]

J. Warga, Normal control problems have no minimizing strictly original solutions, Bulletin of the Amer. Math. Soc., 77 (1971), 625-628. doi: 10.1090/S0002-9904-1971-12779-9.

[11]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

[12]

J. Warga, Controllability, extremality, and abnormality in nonsmooth optimal control, J. Optim. Theory and Applic., 41 (1983), 239-260. doi: 10.1007/BF00934445.

[13]

J. Warga, Optimization and controllability without differentiability assumptions, SIAM J. Control and Optim., 21 (1983), 837-855. doi: 10.1137/0321051.

show all references

References:
[1]

F. H. Clarke, The maximum principle under minimal hypotheses, SIAM J. Control and Optim., 14 (1976), 1078-1091. doi: 10.1137/0314067.

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York, 1983, reprinted as vol. 5 of Classics in Applied Mathematics, SIAM, Philadelphia, 1990.

[3]

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics Vol. 178, Springer Verlag, New York, 1998.

[4]

A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A View from Variational Analysis, Monographs in Mathematics, Springer, Berlin 2009. doi: 10.1007/978-0-387-87821-8.

[5]

A. Ioffe, Euler lagrange and hamiltonian formalisms in dynamic optimization, Trans. Amer. Math. Soc., 349 (1997), 2871-2900. doi: 10.1090/S0002-9947-97-01795-9.

[6]

A. Ioffe, Optimal control of differential inclusions: New developments and open problems, Proc. 41 IEEE Conference on Decision and Control, 3 (2002), 3127-3132. doi: 10.1109/CDC.2002.1184349.

[7]

M. Palladino and R. B. Vinter, Minimizers that are not also relaxed minimizers, SIAM J. Control and Optim., 52 (2014), 2164-2179. doi: 10.1137/130909627.

[8]

T. T. Rockafellar and J.-B. Wets, Variational Analysis, Grundlehren er Mathematischen Wissenshaft, vol. 317, Springer Verlag, New York, 1998. doi: 10.1007/978-3-642-02431-3.

[9]

R. B. Vinter, Optimal Control, Birkhäuser, Boston, 2000.

[10]

J. Warga, Normal control problems have no minimizing strictly original solutions, Bulletin of the Amer. Math. Soc., 77 (1971), 625-628. doi: 10.1090/S0002-9904-1971-12779-9.

[11]

J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

[12]

J. Warga, Controllability, extremality, and abnormality in nonsmooth optimal control, J. Optim. Theory and Applic., 41 (1983), 239-260. doi: 10.1007/BF00934445.

[13]

J. Warga, Optimization and controllability without differentiability assumptions, SIAM J. Control and Optim., 21 (1983), 837-855. doi: 10.1137/0321051.

[1]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[2]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[3]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[4]

Francis Clarke. A general theorem on necessary conditions in optimal control. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 485-503. doi: 10.3934/dcds.2011.29.485

[5]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[6]

Hongwei Lou, Jiongmin Yong. Second-order necessary conditions for optimal control of semilinear elliptic equations with leading term containing controls. Mathematical Control and Related Fields, 2018, 8 (1) : 57-88. doi: 10.3934/mcrf.2018003

[7]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[8]

Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022008

[9]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[10]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations and Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[11]

Sofia O. Lopes, Fernando A. C. C. Fontes, Maria do Rosário de Pinho. On constraint qualifications for nondegenerate necessary conditions of optimality applied to optimal control problems. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 559-575. doi: 10.3934/dcds.2011.29.559

[12]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110

[13]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[14]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[15]

Jianxiong Ye, An Li. Necessary optimality conditions for nonautonomous optimal control problems and its applications to bilevel optimal control. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1399-1419. doi: 10.3934/jimo.2018101

[16]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[17]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[18]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control and Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[19]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[20]

Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]