-
Previous Article
Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces
- DCDS Home
- This Issue
-
Next Article
On the quasi-periodic solutions of generalized Kaup systems
The singular limit problem in a phase separation model with different diffusion rates $^*$
1. | Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China |
References:
[1] |
H. Brezis and A. Ponce, Kato's inequality when $\Delta u$ is a measure, C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604.
doi: 10.1016/j.crma.2003.12.032. |
[2] |
L. Caffarelli, A. Karakhanyan and F. Lin, The geometry of solutions to a segregation problem for non-divergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.
doi: 10.1007/s11784-009-0110-0. |
[3] |
L. Caffarelli and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, Journal of the American Mathematical Society, 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[4] |
L. Caffarelli and F. Lin, Nonlocal heat flows preserving the $L^2$ energy, Discrete and Continuous Dynamical Systems (DCDS-A), 23 (2009), 49-64.
doi: 10.3934/dcds.2009.23.49. |
[5] |
L. Caffarelli and S. Salsa, A geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005. |
[6] |
J. Cannon and C. Hill, On the movement of a chemical reaction interface, Indiana Univ. Math. J., 20 (1970), 429-454.
doi: 10.1512/iumj.1971.20.20037. |
[7] |
M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.
doi: 10.1512/iumj.2005.54.2506. |
[8] |
M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[9] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660. |
[10] |
E. N. Dancer, K. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.
doi: 10.1090/S0002-9947-2011-05488-7. |
[11] |
E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, Journal of Differential Equations, 251 (2011), 2737-2769.
doi: 10.1016/j.jde.2011.06.015. |
[12] |
E. N. Dancer, K. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, Journal of Functional Analysis, 262 (2012), 1087-1131.
doi: 10.1016/j.jfa.2011.10.013. |
[13] |
E. N. Dancer, K. Wang and Z. Zhang, Addendum to "The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture" [J. Funct. Anal., 262 (2012), 1087-1131], Journal of Functional Analysis, 264 (2013), 1125-1129.
doi: 10.1016/j.jfa.2012.10.009. |
[14] |
E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, Journal of Differential Equations, 182 (2002), 470-489.
doi: 10.1006/jdeq.2001.4102. |
[15] |
E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for PDE and Applications (eds. C. Baiochhi and J.L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98. |
[16] |
L. Evans, A chemical diffusion-reaction free boundary problem, Nonlinear Anal., 6 (1982), 455-466.
doi: 10.1016/0362-546X(82)90059-1. |
[17] |
N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calculus of Variations and Partial Differential Equations, 39 (2010), 101-120.
doi: 10.1007/s00526-009-0303-9. |
[18] |
M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publications Mathématiques de L'IHÉS, 76 (1992), 165-246. |
[19] |
W. Littman, G. Stampacchia and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 17 (1963), 43-77. |
[20] |
F. Lin and X. Yang, Geometric Measure Theory: An Introduction, Advanced Mathematics (Beijing/Boston), Science Press, Beijing; International Press, Boston, 2002. |
[21] |
U. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Commun. Anal. Geom., 6 (1998), 199-253. |
[22] |
B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302. |
[23] |
W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Education, 2006. |
[24] |
K. Wang and Z. Zhang, Some new results in competing systems with many species, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27 (2010), 739-761.
doi: 10.1016/j.anihpc.2009.11.004. |
show all references
References:
[1] |
H. Brezis and A. Ponce, Kato's inequality when $\Delta u$ is a measure, C. R. Math. Acad. Sci. Paris, 338 (2004), 599-604.
doi: 10.1016/j.crma.2003.12.032. |
[2] |
L. Caffarelli, A. Karakhanyan and F. Lin, The geometry of solutions to a segregation problem for non-divergence systems, J. Fixed Point Theory Appl., 5 (2009), 319-351.
doi: 10.1007/s11784-009-0110-0. |
[3] |
L. Caffarelli and F. Lin, Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries, Journal of the American Mathematical Society, 21 (2008), 847-862.
doi: 10.1090/S0894-0347-08-00593-6. |
[4] |
L. Caffarelli and F. Lin, Nonlocal heat flows preserving the $L^2$ energy, Discrete and Continuous Dynamical Systems (DCDS-A), 23 (2009), 49-64.
doi: 10.3934/dcds.2009.23.49. |
[5] |
L. Caffarelli and S. Salsa, A geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, Providence, RI, 2005. |
[6] |
J. Cannon and C. Hill, On the movement of a chemical reaction interface, Indiana Univ. Math. J., 20 (1970), 429-454.
doi: 10.1512/iumj.1971.20.20037. |
[7] |
M. Conti, S. Terracini and G. Verzini, A variational problem for the spatial segregation of reaction diffusion systems, Indiana Univ. Math. J., 54 (2005), 779-815.
doi: 10.1512/iumj.2005.54.2506. |
[8] |
M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006. |
[9] |
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660. |
[10] |
E. N. Dancer, K. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.
doi: 10.1090/S0002-9947-2011-05488-7. |
[11] |
E. N. Dancer, K. Wang and Z. Zhang, Uniform Hölder estimate for singularly perturbed parabolic systems of Bose-Einstein condensates and competing species, Journal of Differential Equations, 251 (2011), 2737-2769.
doi: 10.1016/j.jde.2011.06.015. |
[12] |
E. N. Dancer, K. Wang and Z. Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, Journal of Functional Analysis, 262 (2012), 1087-1131.
doi: 10.1016/j.jfa.2011.10.013. |
[13] |
E. N. Dancer, K. Wang and Z. Zhang, Addendum to "The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture" [J. Funct. Anal., 262 (2012), 1087-1131], Journal of Functional Analysis, 264 (2013), 1125-1129.
doi: 10.1016/j.jfa.2012.10.009. |
[14] |
E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, Journal of Differential Equations, 182 (2002), 470-489.
doi: 10.1006/jdeq.2001.4102. |
[15] |
E. De Giorgi, New problems on minimizing movements, in Boundary Value Problems for PDE and Applications (eds. C. Baiochhi and J.L. Lions), RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993, 81-98. |
[16] |
L. Evans, A chemical diffusion-reaction free boundary problem, Nonlinear Anal., 6 (1982), 455-466.
doi: 10.1016/0362-546X(82)90059-1. |
[17] |
N. Gigli, On the heat flow on metric measure spaces: Existence, uniqueness and stability, Calculus of Variations and Partial Differential Equations, 39 (2010), 101-120.
doi: 10.1007/s00526-009-0303-9. |
[18] |
M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Publications Mathématiques de L'IHÉS, 76 (1992), 165-246. |
[19] |
W. Littman, G. Stampacchia and H. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 17 (1963), 43-77. |
[20] |
F. Lin and X. Yang, Geometric Measure Theory: An Introduction, Advanced Mathematics (Beijing/Boston), Science Press, Beijing; International Press, Boston, 2002. |
[21] |
U. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Commun. Anal. Geom., 6 (1998), 199-253. |
[22] |
B. Noris, H. Tavares, S. Terracini and G. Verzini, Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition, Comm. Pure Appl. Math., 63 (2010), 267-302. |
[23] |
W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Education, 2006. |
[24] |
K. Wang and Z. Zhang, Some new results in competing systems with many species, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 27 (2010), 739-761.
doi: 10.1016/j.anihpc.2009.11.004. |
[1] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673 |
[2] |
Daniela De Silva, Fausto Ferrari, Sandro Salsa. Recent progresses on elliptic two-phase free boundary problems. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6961-6978. doi: 10.3934/dcds.2019239 |
[3] |
Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365 |
[4] |
Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355 |
[5] |
Chiara Zanini. Singular perturbations of finite dimensional gradient flows. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 657-675. doi: 10.3934/dcds.2007.18.657 |
[6] |
Quan Wang, Hong Luo, Tian Ma. Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 675-682. doi: 10.3934/dcdsb.2015.20.675 |
[7] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[8] |
Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747 |
[9] |
Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391 |
[10] |
Avner Friedman. Free boundary problems arising in biology. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 193-202. doi: 10.3934/dcdsb.2018013 |
[11] |
Anna Lisa Amadori. Contour enhancement via a singular free boundary problem. Conference Publications, 2007, 2007 (Special) : 44-53. doi: 10.3934/proc.2007.2007.44 |
[12] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Youpei Zhang. Anisotropic singular double phase Dirichlet problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4465-4502. doi: 10.3934/dcdss.2021111 |
[13] |
Tian Ma, Shouhong Wang. Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 459-472. doi: 10.3934/dcds.2004.10.459 |
[14] |
Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807 |
[15] |
Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems and Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195 |
[16] |
Eun Heui Kim. Boundary gradient estimates for subsonic solutions of compressible transonic potential flows. Conference Publications, 2007, 2007 (Special) : 573-579. doi: 10.3934/proc.2007.2007.573 |
[17] |
Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure and Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357 |
[18] |
Avner Friedman. Free boundary problems for systems of Stokes equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1455-1468. doi: 10.3934/dcdsb.2016006 |
[19] |
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 |
[20] |
Noriaki Yamazaki. Almost periodicity of solutions to free boundary problems. Conference Publications, 2001, 2001 (Special) : 386-397. doi: 10.3934/proc.2001.2001.386 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]