\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of Neumann and singular solutions of the fast diffusion equation

Abstract Related Papers Cited by
  • Let $\Omega$ be a smooth bounded domain in $\mathbb{R}^n$, $n\ge 3$, $0 < m \le \frac{n-2}{n}$, $a_1,a_2,\dots, a_{i_0}\in\Omega$, $\delta_0 = \min_{1 \le i \le i_0} \mbox{dist} (a_i,∂\Omega)$ and let $\Omega_{\delta}=\Omega\setminus\cup_{i=1}^{i_0}B_{\delta}(a_i)$ and $\hat{\Omega}=\Omega\setminus\{a_1\,\dots,a_{i_0}\}$. For any $0<\delta<\delta_0$ we will prove the existence and uniqueness of positive solution of the Neumann problem for the equation $u_t=\Delta u^m$ in $\Omega_{\delta}\times (0,T)$ for some $T>0$. We will prove the existence of singular solutions of this equation in $\hat{\Omega}\times (0,T)$ for some $T>0$ that blow-up at the points $a_1,\dots, a_{i_0}$.
    Mathematics Subject Classification: 35A01, 35K67.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems, Lecture Notes in Mathematics, 1224, Springer-Verlag, New York, 1986, 1-46.doi: 10.1007/BFb0072687.

    [2]

    M. Bonforte, G. Grillo and J. L. Vazquez, Fast diffusion flow on manifolds of nonpositive curvature, J. Evol. Eq., 8 (2008), 99-128.doi: 10.1007/s00028-007-0345-4.

    [3]

    M. Bonforte, G. Grillo and J. L. Vazquez, Behaviour near extinction for the fast diffusion equation on bounded domains, J. Math. Pures Appl., 97 (2012), 1-38.doi: 10.1016/j.matpur.2011.03.002.

    [4]

    M. Bonforte and J. L. Vazquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240 (2006), 399-428.doi: 10.1016/j.jfa.2006.07.009.

    [5]

    M. Bonforte and J. L. Vazquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Advances in Math., 223 (2010), 529-578.doi: 10.1016/j.aim.2009.08.021.

    [6]

    M. Bonforte and J. L. Vazquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Adv. in Math., 250 (2014), 242-284.doi: 10.1016/j.aim.2013.09.018.

    [7]

    H. Brezis and L. Veron, Removable singularities for some nonlinear elliptic equations, Arch. Rational Mech. Anal., 75 (1980/81), 1-6. doi: 10.1007/BF00284616.

    [8]

    E. Chasseigne and J. L. Vazquez, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Rat. Mech. Anal., 164 (2002), 133-187.doi: 10.1007/s00205-002-0210-0.

    [9]

    Y. Z. Chen and E. Dibenedetto, On the local behavior of solutions of singular parabolic equations, Arch. Rat. Mech. Anal., 103 (1988), 319-345.doi: 10.1007/BF00251444.

    [10]

    B. E. J. Dahlberg and C. E. Kenig, Nonnegative solutions to the generalized porous medium equation, Rev. Mat. Iberoamericana, 2 (1986), 267-305.

    [11]

    P. Daskalopoulos and C. E. Kenig, Degenerate Diffusion-Initial Value Problems and Local Regularity Theory, Tracts in Mathematics 1, European Mathematical Society, 2007.doi: 10.4171/033.

    [12]

    P. Daskalopoulos, M. del Pino and N. Sesum, Type II ancient compact solutions to the Yamabe flow, arXiv:1209.5479v2.

    [13]

    P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew Math., 622 (2008), 95-119.doi: 10.1515/CRELLE.2008.066.

    [14]

    P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe solitons, Advances in Math., 240 (2013), 346-369.doi: 10.1016/j.aim.2013.03.011.

    [15]

    E. DiBenedetto, Degenerate Parabolic Equations, Universitext, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-0895-2.

    [16]

    E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics, Springer, New York, 2012.doi: 10.1007/978-1-4614-1584-8.

    [17]

    E. DiBenedetto, U. Gianazza and V. Vespri, Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9 (2010), 385-422.

    [18]

    E. DiBenedetto and Y. C. Kwong, Harnack estimates and extinction profile for weak solutions of certain singular parabolic equations, Trans. Amer. Math. Soc., 330 (1992), 783-811.doi: 10.1090/S0002-9947-1992-1076615-7.

    [19]

    E. DiBenedetto, Y. C. Kwong and V. Vespri, Local space-analyticity of solutions of certain singular parabolic equations, Indiana Univ. Math. J., 40 (1991), 741-765.doi: 10.1512/iumj.1991.40.40033.

    [20]

    M. Fila, J. L. Vazquez, M. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Rational Mech. Anal., 204 (2012), 599-625.doi: 10.1007/s00205-011-0486-z.

    [21]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406.

    [22]

    M. A. Herrero and M. Pierre, The Cauchy problem for $u_t=\Delta u^m$ when $0 < m < 1$, Trans. Amer. Math. Soc., 291 (1985), 145-158.doi: 10.1090/S0002-9947-1985-0797051-0.

    [23]

    S. Y. Hsu, Asymptotic behaviour of solution of the equation $u_t=\Delta \log u$ near the extinction time, Advances in Differential Equations, 8 (2003), 161-187.

    [24]

    S. Y. Hsu, Existence of singular solutions of a degenerate equation in $\mathbbR^2$, Math. Ann., 334 (2006), 153-197.doi: 10.1007/s00208-005-0714-7.

    [25]

    S. Y. Hsu, Existence and asymptotic behaviour of solutions of the very fast diffusion equation, Manuscripta Math., 140 (2013), 441-460.doi: 10.1007/s00229-012-0576-8.

    [26]

    K. M. Hui, Existence of solutions of the equation $u_t=\Delta \log u$, Nonlinear Anal. TMA, 37 (1999), 875-914.doi: 10.1016/S0362-546X(98)00081-9.

    [27]

    K. M. Hui, On some Dirichlet and Cauchy problems for a singular diffusion equation, Differential Integral Equations, 15 (2002), 769-804.

    [28]

    K. M. Hui, Singular limit of solutions of the very fast diffusion equation, Nonlinear Anal. TMA, 68 (2008), 1120-1147.doi: 10.1016/j.na.2006.12.009.

    [29]

    O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono., Vol. 23, Amer. Math. Soc., Providence, R.I., U.S.A., 1968.

    [30]

    L. A. Peletier, The Porous Medium Equation, Applications of Nonlinear Analysis in the Physical Sciences (eds. H. Amann, N. Bazley and K. Kirchgassner), Pitman Advanced Publishing Program, Boston, 1981.

    [31]

    L. A. Peletier and H. Zhang, Self-similar solutions of a fast diffusion equation that do not conserve mass, Differential Integral Equations, 8 (1995), 2045-2064.

    [32]

    M. Del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.doi: 10.1512/iumj.2001.50.1876.

    [33]

    P. E. Sacks, Continuity of solutions of a singular parabolic equation, Nonlinear Analysis TMA, 7 (1983), 387-409.doi: 10.1016/0362-546X(83)90092-5.

    [34]

    J. L. Vazquez, Nonexistence of solutions for nonlinear heat equations of fast-diffusion type, J. Math. Pures Appl., 71 (1992), 503-526.

    [35]

    J. L. Vazquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press, Oxford, 2006.doi: 10.1093/acprof:oso/9780199202973.001.0001.

    [36]

    J. L. Vazquez, The porous medium equation-Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return