Citation: |
[1] |
S. Adachi and K. Tanaka, A scale-invariant form of Trudinger-Moser inequality and its best exponent, Proc. Amer. Math. Soc., 1102 (1999), 148-153. |
[2] |
F. J. Almgren and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683-773.doi: 10.1090/S0894-0347-1989-1002633-4. |
[3] |
L. Aloui, S. Ibrahim and K. Nakanishi, Exponential energy decay for damped Klein-Gordon equation with nonlinearities of arbitrary growth, Comm. Partial Differential Equations, 36 (2011), 797-818.doi: 10.1080/03605302.2010.534684. |
[4] |
A. A. Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 7 (2004), 1-21. |
[5] |
P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121-139.doi: 10.1090/S0002-9947-1984-0742415-3. |
[6] |
C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. |
[7] |
J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. |
[8] |
M. Bouchekif and A. Matallah, Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent, Appl. Math. Lett., 22 (2009), 268-275.doi: 10.1016/j.aml.2008.03.024. |
[9] |
P. Brenner, $L_p$-estimates of difference schemes for strictly hyperbolic systems with nonsmooth data, SIAM J. Numer. Anal., 14 (1977), 1126-1144.doi: 10.1137/0714078. |
[10] |
H. Brézis, L. Dupaigne and A. Tesei, On a semilinear elliptic equation with inverse-square potential, Selecta Math. (N.S.), 11 (2005), 1-7.doi: 10.1007/s00029-005-0003-z. |
[11] |
H. Brézis and T. Gallouët, Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4 (1980), 677-681.doi: 10.1016/0362-546X(80)90068-1. |
[12] |
H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.doi: 10.1080/03605308008820154. |
[13] |
N. Burq, F. Planchon, J. G. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.doi: 10.1016/S0022-1236(03)00238-6. |
[14] |
L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math., 53 (1984), 259-275. |
[15] |
Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.doi: 10.3934/cpaa.2014.13.1267. |
[16] |
J. Colliander, S. Ibrahim, M. Majdoub and N. Masmoudi, Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., 6 (2009), 549-575.doi: 10.1142/S0219891609001927. |
[17] |
Z. Gan, Cross-constrained variational methods for the nonlinear Klein-Gordon equations with an inverse square potential, Commun. Pure Appl. Anal., 8 (2009), 1541-1554.doi: 10.3934/cpaa.2009.8.1541. |
[18] |
J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.doi: 10.1006/jdeq.1997.3375. |
[19] |
J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Klein-Gordon equation. II, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 15-35. |
[20] |
J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133 (1995), 50-68.doi: 10.1006/jfan.1995.1119. |
[21] |
T-S. Hsu and H-L. Lin, Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev-Hardy exponents, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 617-633.doi: 10.1017/S0308210509000729. |
[22] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity, Comm. Pure Appl. Math., 59 (2006), 1639-1658.doi: 10.1002/cpa.20127. |
[23] |
S. Ibrahim, M. Majdoub and N. Masmoudi, Double logarithmic inequality with a sharp constant, Proc. Amer. Math. Soc., 135 (2007), 87-97.doi: 10.1090/S0002-9939-06-08240-2. |
[24] |
S. Ibrahim and R. Jrad, Strichartz type estimates and the well-posedness of an energy critical 2D wave equation in a bounded domain, J. Differential Equations, 250 (2011), 3740-3771.doi: 10.1016/j.jde.2011.01.008. |
[25] |
S. Ibrahim, R. Jrad, M. Majdoub and T. Saanouni, Well posedness and unconditional non uniqueness for a 2D semilinear heat equation, preprint. |
[26] |
M. Ishiwata, M. Nakamura and H. Wadade, On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 297-314.doi: 10.1016/j.anihpc.2013.03.004. |
[27] |
T. Kato, Schrödinger operators with singular potentials, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math., 13 (1972), 135-148 (1973).doi: 10.1007/BF02760233. |
[28] |
J. F. Lam, B. Lippmann and F. Tappert, Self-trapped laser beams in plasma, Phys. Fluids, 20 (1977), 1176-1179.doi: 10.1063/1.861679. |
[29] |
K. Morii, T. Sato and H. Wadade, Brézis-Gallouët-Wainger inequality with a double logarithmic term on a bounded domain and its sharp constants, Math. Inequal. Appl., 14 (2011), 295-312.doi: 10.7153/mia-14-24. |
[30] |
K. Morii, T. Sato and H. Wadade, Brézis-Gallouët-Wainger type inequality with a double logarithmic term in the Hölder space: its sharp constants and extremal functions, Nonlinear Anal., 73 (2010), 1747-1766.doi: 10.1016/j.na.2010.05.012. |
[31] |
K. Morii, T. Sato, Y. Sawano and H. Wadade, Sharp constants of Brézis-Gallouët-Wainger type inequalities with a double logarithmic term on bounded domains in Besov and Triebel-Lizorkin spaces, Boundary Value Problems, (2010), Art. ID 584521, 38 pp. |
[32] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092. |
[33] |
S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal., 258 (2010), 3725-3757.doi: 10.1016/j.jfa.2010.02.015. |
[34] |
M. Nakamura, Small global solutions for nonlinear complex Ginzburg-Landau equations and nonlinear dissipative wave equations in Sobolev spaces, Reviews in Mathematical Physics, 23 (2011), 903-931.doi: 10.1142/S0129055X11004473. |
[35] |
M. Nakamura and T. Ozawa, Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., 155 (1998), 364-380.doi: 10.1006/jfan.1997.3236. |
[36] |
M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487.doi: 10.1007/PL00004737. |
[37] |
M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces, Publ. Res. Inst. Math. Sci., 37 (2001), 255-293.doi: 10.2977/prims/1145477225. |
[38] |
T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equation, Nonlinear Anal., 14 (1990), 765-769.doi: 10.1016/0362-546X(90)90104-O. |
[39] |
T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531-540.doi: 10.1016/0022-247X(91)90017-T. |
[40] |
T. Ozawa, On critical cases of Sobolev's inequalities, J. Funct. Anal., 127 (1995), 259-269.doi: 10.1006/jfan.1995.1012. |
[41] |
T. Ozawa, Characterization of Trudinger's inequality, J. Inequal. Appl., 1 (1997), 369-374.doi: 10.1155/S102558349700026X. |
[42] |
I. Peral and J. L. Vázquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Rational Mech. Anal., 129 (1995), 201-224.doi: 10.1007/BF00383673. |
[43] |
J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, (1994), 303ff., approx. 7 pp.doi: 10.1155/S1073792894000346. |
[44] |
R. S. Strichartz, A note on Trudinger's extension of Sobolev's inequalities, Indiana Univ. Math. J., 21 (1972), 841-842. |
[45] |
M. Struwe, Critical points of embeddings of $H^{1,n}_0$ into Orlicz spaces, Ann. Inst. Henri Poincaré, Analyse nonlinéaire, 5 (1988), 425-464. |
[46] |
M. Struwe, The critical nonlinear wave equation in two space dimensions, J. Eur. Math. Soc. (JEMS), 15 (2013), 1805-1823.doi: 10.4171/JEMS/404. |
[47] |
N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. |
[48] |
B. Wang, Scattering of solutions for critical and subcritical nonlinear Klein-Gordon equations in $H^s$, Discrete Contin. Dynam. Systems, 5 (1999), 753-763.doi: 10.3934/dcds.1999.5.753. |
[49] |
Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.doi: 10.1090/S0002-9939-08-09514-2. |