October  2015, 35(10): 4905-4929. doi: 10.3934/dcds.2015.35.4905

Wave extension problem for the fractional Laplacian

1. 

Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland

2. 

Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden

3. 

Departamento de Matemáticas, Universidad Autónoma de Madrid and ICMAT, 28049 Madrid, Spain

Received  November 2014 Revised  February 2015 Published  April 2015

We show that the fractional Laplacian can be viewed as a Dirichlet-to-Neumann map for a degenerate hyperbolic problem, namely, the wave equation with an additional diffusion term that blows up at time zero. A solution to this wave extension problem is obtained from the Schrödinger group by means of an oscillatory subordination formula, which also allows us to find kernel representations for such solutions. Asymptotics of related oscillatory integrals are analysed in order to determine the correct domains for initial data in the general extension problem involving non-negative self-adjoint operators. An alternative approach using Bessel functions is also described.
Citation: Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905
References:
[1]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[2]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

[3]

J. E. Galé, P. J. Miana and P. R. Stinga, Extension problem and fractional operators: Semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368. doi: 10.1007/s00028-013-0182-6.

[4]

N. N. Lebedev, Special Functions and Their Applications, Revised English edition, Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.

[5]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[6]

R. S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc., 148 (1970), 461-471. doi: 10.1090/S0002-9947-1970-0256219-1.

show all references

References:
[1]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[2]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, 1998.

[3]

J. E. Galé, P. J. Miana and P. R. Stinga, Extension problem and fractional operators: Semigroups and wave equations, J. Evol. Equ., 13 (2013), 343-368. doi: 10.1007/s00028-013-0182-6.

[4]

N. N. Lebedev, Special Functions and Their Applications, Revised English edition, Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965.

[5]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.

[6]

R. S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc., 148 (1970), 461-471. doi: 10.1090/S0002-9947-1970-0256219-1.

[1]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3803-3819. doi: 10.3934/dcdss.2021019

[2]

Gregory Beylkin, Lucas Monzón. Efficient representation and accurate evaluation of oscillatory integrals and functions. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4077-4100. doi: 10.3934/dcds.2016.36.4077

[3]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[4]

Ran Zhuo, Yan Li. Nonexistence and symmetry of solutions for Schrödinger systems involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1595-1611. doi: 10.3934/dcds.2019071

[5]

Shaoming Guo. Oscillatory integrals related to Carleson's theorem: fractional monomials. Communications on Pure and Applied Analysis, 2016, 15 (3) : 929-946. doi: 10.3934/cpaa.2016.15.929

[6]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations and Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[7]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[8]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure and Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[9]

M.T. Boudjelkha. Extended Riemann Bessel functions. Conference Publications, 2005, 2005 (Special) : 121-130. doi: 10.3934/proc.2005.2005.121

[10]

Vincenzo Ambrosio, Teresa Isernia. Multiplicity and concentration results for some nonlinear Schrödinger equations with the fractional p-Laplacian. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5835-5881. doi: 10.3934/dcds.2018254

[11]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[12]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[13]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[14]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[15]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[16]

Hassan Emamirad, Arnaud Rougirel. Feynman path formula for the time fractional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3391-3400. doi: 10.3934/dcdss.2020246

[17]

Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499

[18]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[19]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128

[20]

Qihong Shi, Congming Peng, Qingxuan Wang. Blowup results for the fractional Schrödinger equation without gauge invariance. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021304

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (2)

[Back to Top]