-
Previous Article
Regions of stability for a linear differential equation with two rationally dependent delays
- DCDS Home
- This Issue
-
Next Article
Wave extension problem for the fractional Laplacian
Wavefronts of a stage structured model with state--dependent delay
1. | Department of Mathematics, Tianjin Polytechnic University, Tianjin 300387, China |
2. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875 |
3. | School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China |
References:
[1] |
SIAM J. Appl. Math., 70 (2010), 1611-1633.
doi: 10.1137/080742713. |
[2] |
Math. Biosci, 101 (1990), 139-153.
doi: 10.1016/0025-5564(90)90019-U. |
[3] |
SIAM J. Appl. Math, 52 (1992), 855-869.
doi: 10.1137/0152048. |
[4] |
SIAM J. Appl. Math., 63 (2003), 2063-2086.
doi: 10.1137/S0036139902416500. |
[5] |
Nonlinear Anal. Real World Appl., 6 (2005), 13-33.
doi: 10.1016/j.nonrwa.2004.04.002. |
[6] |
Int. J. Math. Analysis, 1 (2007), 391-407. |
[7] |
University of Chicago Press, Chicago, IL, 1954, p. 370. Google Scholar |
[8] |
Ecol. Model, 11 (1980), 157-166. Google Scholar |
[9] |
J. Funct. Space Appl., (2013), Art. ID 863561, 7 pp. |
[10] |
IBM J. Res. Develop., 17 (1973), 307-313.
doi: 10.1147/rd.174.0307. |
[11] |
Ecol. Model., 215 (2008), 69-76.
doi: 10.1016/j.ecolmodel.2008.02.019. |
[12] |
in Antarctica (eds. W. Bonner and D. Walton), Pergamon Press, New York, 1985, 223-241. Google Scholar |
[13] |
Proc. R. Soc. Lond. A, 459 (2003), 1563-1579.
doi: 10.1098/rspa.2002.1094. |
[14] |
J. Animal Ecol., 52 (1983), 479-485.
doi: 10.2307/4567. |
[15] |
Springer-Verlag, New York, 1977. |
[16] |
in Handbook of Differential Equations: Ordinary Differential Equations. Vol. III (eds. A. Canada, P. Drabek and A. Fonda), Elsevier Science B. V., North-Holland, Amsterdam, 2006, 435-545.
doi: 10.1016/S1874-5725(06)80009-X. |
[17] |
Nonlinear Anal. Real World Appl., 14 (2013), 83-103.
doi: 10.1016/j.nonrwa.2012.05.004. |
[18] |
J. Math. Anal. Appl., 399 (2013), 133-146.
doi: 10.1016/j.jmaa.2012.09.058. |
[19] |
J. Fish. Res. Bd. Can., 33 (1976), 2829-2833.
doi: 10.1139/f76-338. |
[20] |
Discret. Contin. Dyn. S., 9 (2003), 993-1028.
doi: 10.3934/dcds.2003.9.993. |
[21] |
preprint, November 30, 2014, arXiv:1412.0219. Google Scholar |
[22] |
Academic, New York, 1993. |
[23] |
Bull. Math. Biol., 37 (1975), 11-17. Google Scholar |
[24] |
Comm. Pure Appl. Math., 60 (2007), 1-40; Comm. Pure Appl. Math., 61 (2008), 137-138 (erratum).
doi: 10.1002/cpa.20221. |
[25] |
Nonlinear Anal., 16 (1991), 131-142.
doi: 10.1016/0362-546X(91)90164-V. |
[26] |
Springer, 1989.
doi: 10.1007/978-3-662-08539-4. |
[27] |
J. Comput. Appl. Math., 190 (2006), 99-113.
doi: 10.1016/j.cam.2005.01.047. |
[28] |
McGraw-Hill, 1991. |
[29] |
Trans. Amer. Math. Soc., 302 (1987), 587-615.
doi: 10.2307/2000859. |
[30] |
Proc. R. Soc. Lond. A, 456 (2000), 2365-2386.
doi: 10.1098/rspa.2000.0616. |
[31] |
Math. Biosci., 25 (1975), 195-204.
doi: 10.1016/0025-5564(75)90002-4. |
[32] |
Trans. Amer. Math. Soc., 200 (1974), 395-418.
doi: 10.1090/S0002-9947-1974-0382808-3. |
[33] |
J. Differential Equations, 247 (2009), 887-905.
doi: 10.1016/j.jde.2009.04.002. |
[34] |
IMA J. Math. Appl. in Medicine and Biology, 6 (1989), 47-68.
doi: 10.1093/imammb/6.1.47. |
[35] |
Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[36] |
Appl. Math. Comput., 214 (2009), 228-235.
doi: 10.1016/j.amc.2009.03.078. |
[37] |
Second edition, China Science Publishing Group, 2011. Google Scholar |
[38] |
Appl. Math. Comput., 77 (1996), 185-194.
doi: 10.1016/S0096-3003(95)00212-X. |
[39] |
Math. Comput. Model., 49 (2009), 1021-1029.
doi: 10.1016/j.mcm.2008.09.007. |
[40] |
Nonlinear Anal. Real World Appl., 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007. |
show all references
References:
[1] |
SIAM J. Appl. Math., 70 (2010), 1611-1633.
doi: 10.1137/080742713. |
[2] |
Math. Biosci, 101 (1990), 139-153.
doi: 10.1016/0025-5564(90)90019-U. |
[3] |
SIAM J. Appl. Math, 52 (1992), 855-869.
doi: 10.1137/0152048. |
[4] |
SIAM J. Appl. Math., 63 (2003), 2063-2086.
doi: 10.1137/S0036139902416500. |
[5] |
Nonlinear Anal. Real World Appl., 6 (2005), 13-33.
doi: 10.1016/j.nonrwa.2004.04.002. |
[6] |
Int. J. Math. Analysis, 1 (2007), 391-407. |
[7] |
University of Chicago Press, Chicago, IL, 1954, p. 370. Google Scholar |
[8] |
Ecol. Model, 11 (1980), 157-166. Google Scholar |
[9] |
J. Funct. Space Appl., (2013), Art. ID 863561, 7 pp. |
[10] |
IBM J. Res. Develop., 17 (1973), 307-313.
doi: 10.1147/rd.174.0307. |
[11] |
Ecol. Model., 215 (2008), 69-76.
doi: 10.1016/j.ecolmodel.2008.02.019. |
[12] |
in Antarctica (eds. W. Bonner and D. Walton), Pergamon Press, New York, 1985, 223-241. Google Scholar |
[13] |
Proc. R. Soc. Lond. A, 459 (2003), 1563-1579.
doi: 10.1098/rspa.2002.1094. |
[14] |
J. Animal Ecol., 52 (1983), 479-485.
doi: 10.2307/4567. |
[15] |
Springer-Verlag, New York, 1977. |
[16] |
in Handbook of Differential Equations: Ordinary Differential Equations. Vol. III (eds. A. Canada, P. Drabek and A. Fonda), Elsevier Science B. V., North-Holland, Amsterdam, 2006, 435-545.
doi: 10.1016/S1874-5725(06)80009-X. |
[17] |
Nonlinear Anal. Real World Appl., 14 (2013), 83-103.
doi: 10.1016/j.nonrwa.2012.05.004. |
[18] |
J. Math. Anal. Appl., 399 (2013), 133-146.
doi: 10.1016/j.jmaa.2012.09.058. |
[19] |
J. Fish. Res. Bd. Can., 33 (1976), 2829-2833.
doi: 10.1139/f76-338. |
[20] |
Discret. Contin. Dyn. S., 9 (2003), 993-1028.
doi: 10.3934/dcds.2003.9.993. |
[21] |
preprint, November 30, 2014, arXiv:1412.0219. Google Scholar |
[22] |
Academic, New York, 1993. |
[23] |
Bull. Math. Biol., 37 (1975), 11-17. Google Scholar |
[24] |
Comm. Pure Appl. Math., 60 (2007), 1-40; Comm. Pure Appl. Math., 61 (2008), 137-138 (erratum).
doi: 10.1002/cpa.20221. |
[25] |
Nonlinear Anal., 16 (1991), 131-142.
doi: 10.1016/0362-546X(91)90164-V. |
[26] |
Springer, 1989.
doi: 10.1007/978-3-662-08539-4. |
[27] |
J. Comput. Appl. Math., 190 (2006), 99-113.
doi: 10.1016/j.cam.2005.01.047. |
[28] |
McGraw-Hill, 1991. |
[29] |
Trans. Amer. Math. Soc., 302 (1987), 587-615.
doi: 10.2307/2000859. |
[30] |
Proc. R. Soc. Lond. A, 456 (2000), 2365-2386.
doi: 10.1098/rspa.2000.0616. |
[31] |
Math. Biosci., 25 (1975), 195-204.
doi: 10.1016/0025-5564(75)90002-4. |
[32] |
Trans. Amer. Math. Soc., 200 (1974), 395-418.
doi: 10.1090/S0002-9947-1974-0382808-3. |
[33] |
J. Differential Equations, 247 (2009), 887-905.
doi: 10.1016/j.jde.2009.04.002. |
[34] |
IMA J. Math. Appl. in Medicine and Biology, 6 (1989), 47-68.
doi: 10.1093/imammb/6.1.47. |
[35] |
Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-4050-1. |
[36] |
Appl. Math. Comput., 214 (2009), 228-235.
doi: 10.1016/j.amc.2009.03.078. |
[37] |
Second edition, China Science Publishing Group, 2011. Google Scholar |
[38] |
Appl. Math. Comput., 77 (1996), 185-194.
doi: 10.1016/S0096-3003(95)00212-X. |
[39] |
Math. Comput. Model., 49 (2009), 1021-1029.
doi: 10.1016/j.mcm.2008.09.007. |
[40] |
Nonlinear Anal. Real World Appl., 13 (2012), 1429-1440.
doi: 10.1016/j.nonrwa.2011.11.007. |
[1] |
Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021035 |
[2] |
Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021087 |
[3] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[4] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[5] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404 |
[6] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[7] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[8] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[9] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[10] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[11] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[12] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[13] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[14] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[15] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[16] |
Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021006 |
[17] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[18] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[19] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[20] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]