• Previous Article
    Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities
  • DCDS Home
  • This Issue
  • Next Article
    Regions of stability for a linear differential equation with two rationally dependent delays
October  2015, 35(10): 4987-5001. doi: 10.3934/dcds.2015.35.4987

Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$

1. 

KAIST, Department of Mathematical Sciences, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea

Received  August 2014 Revised  February 2015 Published  April 2015

The aim of this work is to show the existence of free boundary minimal surfaces of Saddle Tower type which are embedded in a vertical solid cylinder in $\mathbb{R}^3$ and invariant with respect to a vertical translation. The number of boundary curves equals $2l$, $l \ge 2$. These surfaces come in families depending on one parameter and they converge to $2l$ vertical stripes having a common vertical intersection line. Such surfaces are obtained by perturbing the symmetrically modified Saddle Tower minimal surfaces.
Citation: Filippo Morabito. Singly periodic free boundary minimal surfaces in a solid cylinder of $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4987-5001. doi: 10.3934/dcds.2015.35.4987
References:
[1]

M. M. Fall and C. Mercuri, Minimal disc-type surfaces embedded in a perturbed cylinder, Differential Integral Equations, 22 (2009), 1115-1124.  Google Scholar

[2]

H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math., 62 (1988), 83-114. doi: 10.1007/BF01258269.  Google Scholar

[3]

R. Huff and J. McCuan, Scherk-type capillary graphs, J. Mathematical Fluid Mechanics, 8 (2006), 99-119. doi: 10.1007/s00021-004-0140-8.  Google Scholar

[4]

R. Lopez and J. Pyo, Capillary surfaces of constant mean curvature in a right solid cylinder, Math. Nachrichten, 287 (2014), 1312-1319. doi: 10.1002/mana.201200301.  Google Scholar

[5]

S. Montiel and A. Ros, Schrödinger operators associated to a holomorphic map, Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, 1481, Springer, Berlin, 1991, 147-174. doi: 10.1007/BFb0083639.  Google Scholar

[6]

F. Morabito, A Costa-Hoffman-Meeks type surface in $\mathbbH^2 \times \mathbbR$, Trans. Am. Math. Soc., 363 (2011), 1-36. doi: 10.1090/S0002-9947-2010-04952-9.  Google Scholar

[7]

F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$, Boundary Value Problems, (2014), p130. Published online only at: http://www.boundaryvalueproblems.com/content/2014/1/130. Google Scholar

[8]

F. Pacard, Connected sum constructions in geometry and non-linear analysis,, Lecture notes available from: , ().   Google Scholar

[9]

M. Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk, Annales Institut Fourier, 46 (1996), 1385-1442. doi: 10.5802/aif.1554.  Google Scholar

[10]

M. Weber, Classical minimal surfaces in euclidean space by examples: Geometric and computational aspects of the Weierstrass representation, in Global Theory of Minimal Surfaces, Proceedings of the Clay Mathematical Institute, 2, A co-publication of the AMS and Clay Mathematics Institute, 2005, 19-63. Google Scholar

show all references

References:
[1]

M. M. Fall and C. Mercuri, Minimal disc-type surfaces embedded in a perturbed cylinder, Differential Integral Equations, 22 (2009), 1115-1124.  Google Scholar

[2]

H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math., 62 (1988), 83-114. doi: 10.1007/BF01258269.  Google Scholar

[3]

R. Huff and J. McCuan, Scherk-type capillary graphs, J. Mathematical Fluid Mechanics, 8 (2006), 99-119. doi: 10.1007/s00021-004-0140-8.  Google Scholar

[4]

R. Lopez and J. Pyo, Capillary surfaces of constant mean curvature in a right solid cylinder, Math. Nachrichten, 287 (2014), 1312-1319. doi: 10.1002/mana.201200301.  Google Scholar

[5]

S. Montiel and A. Ros, Schrödinger operators associated to a holomorphic map, Global Differential Geometry and Global Analysis, Lecture Notes in Mathematics, 1481, Springer, Berlin, 1991, 147-174. doi: 10.1007/BFb0083639.  Google Scholar

[6]

F. Morabito, A Costa-Hoffman-Meeks type surface in $\mathbbH^2 \times \mathbbR$, Trans. Am. Math. Soc., 363 (2011), 1-36. doi: 10.1090/S0002-9947-2010-04952-9.  Google Scholar

[7]

F. Morabito, Higher genus capillary surfaces in the unit ball of $\mathbbR^3$, Boundary Value Problems, (2014), p130. Published online only at: http://www.boundaryvalueproblems.com/content/2014/1/130. Google Scholar

[8]

F. Pacard, Connected sum constructions in geometry and non-linear analysis,, Lecture notes available from: , ().   Google Scholar

[9]

M. Traizet, Construction de surfaces minimales en recollant des surfaces de Scherk, Annales Institut Fourier, 46 (1996), 1385-1442. doi: 10.5802/aif.1554.  Google Scholar

[10]

M. Weber, Classical minimal surfaces in euclidean space by examples: Geometric and computational aspects of the Weierstrass representation, in Global Theory of Minimal Surfaces, Proceedings of the Clay Mathematical Institute, 2, A co-publication of the AMS and Clay Mathematics Institute, 2005, 19-63. Google Scholar

[1]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[2]

Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete & Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044

[3]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[4]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[5]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[6]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[7]

Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks & Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211

[8]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[9]

Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 397-422. doi: 10.3934/dcds.2004.10.397

[10]

José Ginés Espín Buendía, Daniel Peralta-salas, Gabriel Soler López. Existence of minimal flows on nonorientable surfaces. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4191-4211. doi: 10.3934/dcds.2017178

[11]

Wenhua Qiu, Jianguo Si. On small perturbation of four-dimensional quasi-periodic system with degenerate equilibrium point. Communications on Pure & Applied Analysis, 2015, 14 (2) : 421-437. doi: 10.3934/cpaa.2015.14.421

[12]

Banavara N. Shashikanth. Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame. Journal of Geometric Mechanics, 2020, 12 (1) : 25-52. doi: 10.3934/jgm.2020003

[13]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[14]

Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete & Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252

[15]

Lianzhang Bao, Wenxian Shen. Logistic type attraction-repulsion chemotaxis systems with a free boundary or unbounded boundary. I. Asymptotic dynamics in fixed unbounded domain. Discrete & Continuous Dynamical Systems, 2020, 40 (2) : 1107-1130. doi: 10.3934/dcds.2020072

[16]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[17]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[18]

Adeolu Taiwo, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert spaces. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2733-2759. doi: 10.3934/jimo.2020092

[19]

Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021046

[20]

Nam-Yong Lee, Bradley J. Lucier. Preconditioned conjugate gradient method for boundary artifact-free image deblurring. Inverse Problems & Imaging, 2016, 10 (1) : 195-225. doi: 10.3934/ipi.2016.10.195

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]