\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities

Abstract Related Papers Cited by
  • In this paper we deal with Robin and Neumann parametric elliptic equations driven by a nonhomogeneous differential operator and with a reaction that exhibits competing nonlinearities (concave-convex nonlinearities). For the Robin problem and without employing the Ambrosetti-Rabinowitz condition, we prove a bifurcation theorem for the positive solutions for small values of the parameter $\lambda>0$. For the Neumann problem with a different geometry and using the Ambrosetti-Rabinowitz condition we prove bifurcation for large values of $\lambda>0$.
    Mathematics Subject Classification: 35J66, 35J70, 35J92.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Memoirs Amer. Math. Soc., 196 (2008), vi+70 pp.doi: 10.1090/memo/0915.

    [2]

    A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave-convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.doi: 10.1006/jfan.1994.1078.

    [3]

    A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: 10.1016/0022-1236(73)90051-7.

    [4]

    F. Cîrstea, M. Ghergu and V. D. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures Appl., 84 (2005), 493-508.doi: 10.1016/j.matpur.2004.09.005.

    [5]

    J. I. Diaz and J. E. Saa, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, 305 (1987), 521-524.

    [6]

    N. Dunford and J. Schwartz, Linear Operators I, Wiley-Interscience, New York, 1958.

    [7]

    D. G. de Figueiredo, J.-P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc., 8 (2006), 269-286.doi: 10.4171/JEMS/52.

    [8]

    D. G. de Figueiredo, J.-P. Gossez and P. Ubilla, Local "superlinearity" and "sublinearity" for the $p$-Laplacian, J. Funct. Anal., 257 (2009), 721-752.doi: 10.1016/j.jfa.2009.04.001.

    [9]

    M. Filippakis, A. Kristaly and N. S. Papageorgiou, Existence of five nonzero solutions with constant sign for a $p$-Laplacian equation, Discrete Cont. Dyn. Systems, 24 (2009), 405-440.doi: 10.3934/dcds.2009.24.405.

    [10]

    J. Garcia Azero, J. Manfredi and I. Peral Alonso, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math., 2 (2000), 385-404.doi: 10.1142/S0219199700000190.

    [11]

    L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Chapman, Hall/CRC, Boca Raton, Fl., 2006.

    [12]

    L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian-type equations, Adv. Nonlinear Studies, 8 (2008), 843-870.

    [13]

    L. Gasinski and N. S. Papageorgiou, Bifurcation-type results for nonlinear parametric elliptic equations, Proc. Royal. Soc. Edinburgh, Sect. A, 142 (2012), 595-623.doi: 10.1017/S0308210511000126.

    [14]

    Z. Guo and Z. Zhang, $W^{1,p}$ versus $C^1$ local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl., 286 (2003), 32-50.doi: 10.1016/S0022-247X(03)00282-8.

    [15]

    S. Hu and N. S. Papageorgiou, Multiplicity of solutions for parametric $p$-Laplacian equations with nonlinearity concave near the origin, Tôhoku Math. J., 62 (2010), 137-162.doi: 10.2748/tmj/1270041030.

    [16]

    A. Kristaly and G. Moroşanu, New competition phenomena in Dirichlet problems, J. Math. Pures Appl., 94 (2010), 555-570.doi: 10.1016/j.matpur.2010.03.005.

    [17]

    G. Lieberman, The natural generalization of the conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Commun. Partial Diff. Equations, 16 (1991), 311-361.doi: 10.1080/03605309108820761.

    [18]

    N. S. Papageorgiou and V. D. Rădulescu, Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim., 69 (2014), 393-430.doi: 10.1007/s00245-013-9227-z.

    [19]

    N. S. Papageorgiou and V. D. Rădulescu, Solutions with sign information for nonlinear nonhomogeneous elliptic equations, Topol. Methods Nonlin. Anal. to appear.

    [20]

    N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.doi: 10.1016/j.jde.2014.01.010.

    [21]

    P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Basel, 2007.

    [22]

    V. D. Rădulescu and D. Repovš, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal., 75 (2012), 1524-1530.doi: 10.1016/j.na.2011.01.037.

    [23]

    P. Winkert, $L^{\infty}$ estimates for nonlinear elliptic Neumann boundary value problems, Nonlinear Diff. Equ. Appl. (NoDEA), 17 (2010), 289-302.doi: 10.1007/s00030-009-0054-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return