\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the Cauchy problem for a four-component Camassa-Holm type system

Abstract Related Papers Cited by
  • This paper is concerned with a four-component Camassa-Holm type system proposed in [37], where its bi-Hamiltonian structure and infinitely many conserved quantities were constructed. In the paper, we first establish the local well-posedness for the system. Then we present several global existence and blow-up results for two integrable two-component subsystems.
    Mathematics Subject Classification: Primary: 35G25; Secondary: 35L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Lett. Math. Phys., 32 (1994), 137-151.doi: 10.1007/BF00739423.

    [2]

    H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, Vol. 343, Springer, Berlin-Heidelberg-New York, 2011.doi: 10.1007/978-3-642-16830-7.

    [3]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [4]

    R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [5]

    C. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models, J. Dynam. Differential Equations, 16 (2004), 167-178.doi: 10.1023/B:JODY.0000041284.26400.d0.

    [6]

    G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60-91.doi: 10.1016/j.jfa.2005.07.008.

    [7]

    A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757.

    [8]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701.

    [9]

    A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Exposition. Math., 15 (1997), 53-85.

    [10]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [11]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [12]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328.

    [13]

    A. Constantin and J. Escher, Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47 (1998), 1527-1545.

    [14]

    A. Constantin and J. Escher, Particle trajectories in solitary water waves, Bull. Amer. Math. Soc., 44 (2007), 423-431.doi: 10.1090/S0273-0979-07-01159-7.

    [15]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [16]

    A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

    [17]

    A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity, 23 (2010), 2559-2575.doi: 10.1088/0951-7715/23/10/012.

    [18]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [19]

    A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

    [20]

    A. Constantin and L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys., 211 (2000), 45-61.doi: 10.1007/s002200050801.

    [21]

    A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

    [22]

    A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonlinear Sci., 12 (2002), 415-422.doi: 10.1007/s00332-002-0517-x.

    [23]

    R. Danchin, A few remarks on the Camassa-Holm equation, Differential Integral Equations, 14 (2001), 953-988.

    [24]

    A. Degasperis, D. D. Kholm and A. N. I. Khon, A new integrable equation with peakon solutions, Teoret. Mat. Fiz., 133 (2002), 170-183.doi: 10.1023/A:1021186408422.

    [25]

    A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory (Rome, 1998), {World Sci. Publ., River Edge, NJ}, 1999, 23-37.

    [26]

    J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117.doi: 10.1512/iumj.2007.56.3040.

    [27]

    J. Escher and Z. Yin, Initial boundary value problems for nonlinear dispersive wave equations, J. Funct. Anal., 256 (2009), 479-508.doi: 10.1016/j.jfa.2008.07.010.

    [28]

    J. Escher and Z. Yin, Initial boundary value problems of the Degasperis-Procesi equation, Polish Acad. Sci. Inst. Math., Warsaw, 81 (2008), 157-174.doi: 10.4064/bc81-0-10.

    [29]

    A. S. Fokas, On a class of physically important integrable equations, Phys. D, 87 (1995), 145-150.doi: 10.1016/0167-2789(95)00133-O.

    [30]

    B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Phys. D, 95 (1996), 229-243.doi: 10.1016/0167-2789(96)00048-6.

    [31]

    B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D, 4 (1981/82), 47-66. doi: 10.1016/0167-2789(81)90004-X.

    [32]

    G. Gui, Y. Liu, P. J. Olver and C. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.doi: 10.1007/s00220-012-1566-0.

    [33]

    A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity, 25 (2012), 449-479.doi: 10.1088/0951-7715/25/2/449.

    [34]

    D. D. Holm and R. I. Ivanov, Multi-component generalizations of the CH equation: Geometrical aspects, peakons and numerical examples, J. Phys. A, 43 (2010), 492001, 20pp.doi: 10.1088/1751-8113/43/49/492001.

    [35]

    A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41 (2008), 372002, 10pp.doi: 10.1088/1751-8113/41/37/372002.

    [36]

    H. Li, Y. Li and Y. Chen, Bi-Hamiltonian structure of multi-component Novikov equation, J. Nonlinear Math. Phys., 21 (2014), 509-520.doi: 10.1080/14029251.2014.975522.

    [37]

    N. Li, Q. P. Liu and Z. Popowicz, A four-component Camassa-Holm type hierarchy, J. Geom. Phys., 85 (2014), 29-39.doi: 10.1016/j.geomphys.2014.05.026.

    [38]

    Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683.

    [39]

    X. Liu, Z. Qiao and Z. Yin, On the Cauchy problem for a generalized Camassa-Holm equation with both quadratic and cubic nonlinearity, Commun. Pure Appl. Anal., 13 (2014), 1283-1304.doi: 10.3934/cpaa.2014.13.1283.

    [40]

    Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.doi: 10.1007/s00220-006-0082-5.

    [41]

    H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., 17 (2007), 169-198.doi: 10.1007/s00332-006-0803-3.

    [42]

    V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002, 14pp.doi: 10.1088/1751-8113/42/34/342002.

    [43]

    P. J. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E (3), 53 (1996), 1900-1906.doi: 10.1103/PhysRevE.53.1900.

    [44]

    Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701, 9pp.doi: 10.1063/1.2365758.

    [45]

    Z. Qiao and B. Xia, Integrable peakon systems with weak kink and kink-peakon interactional solutions, Front. Math. China, 8 (2013), 1185-1196.doi: 10.1007/s11464-013-0314-x.

    [46]

    C. Qu, J. Song and R. Yao, Multi-component integrable systems and invariant curve flows in certain geometries, SIGMA Symmetry Integrability Geom. Methods Appl., 9 (2013), Paper 001, 19pp.

    [47]

    G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X.

    [48]

    J. Song, C. Qu and Z. Qiao, A new integrable two-component system with cubic nonlinearity, J. Math. Phys., 52 (2011), 013503, 9pp.doi: 10.1063/1.3530865.

    [49]

    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

    [50]

    X. Wu and Z. Yin, Global weak solutions for the Novikov equation, J. Phys. A, 44 (2011), 055202, 17pp.doi: 10.1088/1751-8113/44/5/055202.

    [51]

    X. Wu and Z. Yin, Well-posedness and global existence for the Novikov equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 707-727.

    [52]

    B. Xia and Z. Qiao, A new two-component integrable system with peakon and weak kink solutions, preprint, arXiv:1211.5727.

    [53]

    B. Xia and Z. Qiao, Integrable multi-component Camassa-Holm system, preprint, arXiv:1310.0268.

    [54]

    B. Xia, Z. Qiao and R. Zhou, A synthetical integrable two-component model with peakon solutions, preprint, arXiv:1301.3216.

    [55]

    Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

    [56]

    K. Yan, Z. Qiao and Z. Yin, Qualitative analysis for a new integrable two-component Camassa-Holm system with peakon and weak kink solutions, Comm. Math. Phys., 336 (2015), 581-617.doi: 10.1007/s00220-014-2236-1.

    [57]

    Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194.doi: 10.1016/j.jfa.2003.07.010.

    [58]

    Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649-666.

    [59]

    Z. Zhang and Z. Yin, Well-posedness, global existence and blow-up phenomena for an integrable multi-component Camassa-Holm system, preprint, arXiv:1411.6402.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(259) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return