Advanced Search
Article Contents
Article Contents

Stochastic Korteweg-de Vries equation driven by fractional Brownian motion

Abstract Related Papers Cited by
  • We consider the Cauchy problem for the Korteweg-de Vries equation driven by a cylindrical fractional Brownian motion (fBm) in this paper. With Hurst parameter $H\geq\frac{7}{16}$ of the fBm, we obtain the local existence results with initial value in classical Sobolev spaces $H^s$ with $s\geq -\frac{9}{16}$. Furthermore, we give the relation between the Hurst parameter $H$ and the index $s$ to the Sobolev spaces $H^s$, which finds out the regularity between the driven term fBm and the initial value for the stochastic Korteweg-de Vries equation.
    Mathematics Subject Classification: Primary: 35R60, 35Q53; Secondary: 60H15.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, Annals of Probab., 29 (2001), 766-801.doi: 10.1214/aop/1008956692.


    E. Alòs and D. Nualart, Stochastic calculus with respect to fractional Brownian motion, Stoch. Stoch. Rep., 75 (2003), 129-152.doi: 10.1080/1045112031000078917.


    F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and its Applications (New York), Springer-Verlag London, Ltd., London, 2008.doi: 10.1007/978-1-84628-797-8.


    J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation, Geom. Funct. Anal., 2 (1993), 107-156, 209-262.


    P. Caithamer, The stochastic wave equation driven by fractional Brownian noise and temporally correlated smooth noise, Stoch. Dyn., 5 (2005), 45-64.doi: 10.1142/S0219493705001286.


    H. Y. Chang, C. Lien, S. Sukarto, S. Raychaudhury, J. Hill, E. K. Tsikis and K. E. Lonngren, Propagation of ion-acoustic solitons in a non-quiescent plasma, Plasma Phys. Control. Fusion, 28 (1986), 675-681.doi: 10.1088/0741-3335/28/4/005.


    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.doi: 10.1017/CBO9780511666223.


    A. de Bouard, A. Debussche and Y. Tsutsumi, White noise driven Korteweg-de Veris equation, J. Funct. Anal., 169 (1999), 532-558.doi: 10.1006/jfan.1999.3484.


    A. de Bouard, A. Debussche and Y. Tsutsumi, Periocic solutions of the Korteweg-de Veris equation driven by white noise, SIAM J. Math. Anal., 36 (2004), 815-855.doi: 10.1137/S0036141003425301.


    T. E. Duncan, J. Jakubowski and B. Pasik-Duncan, Stochastic integration for fractional Brownian motion in a Hilbert space, Stoch. Dyn., 6 (2006), 53-75.doi: 10.1142/S0219493706001645.


    T. E. Duncan, B. Maslowski and B. Pasik-Duncan, Fractional Brownian motion and stochastic equations in Hilbert spaces, Stoch. Dyn., 2 (2002), 225-250.doi: 10.1142/S0219493702000340.


    M. Erraoui, D. Nualart and Y. Ouknine, Hyperbolic stochastic partial differential equations with additive fractional Brownian sheet, Stoch. Dyn., 3 (2003), 121-139.doi: 10.1142/S0219493703000681.


    W. Grecksch and V. V. Ahn, A parabolic stochastic differential equation with fractional Brownian motion input, Stat. Probab. Lett., 41 (1999), 337-346.doi: 10.1016/S0167-7152(98)00147-3.


    B. Guo and Z. Huo, The well-posedness of the Korteweg-de Vries-Benjamin-Ono equation, J. Math. Anal. Appl., 295 (2004), 444-458.doi: 10.1016/j.jmaa.2004.02.043.


    R. Herman, The stochastic, damped Korteweg-de Vries equation, J. Phys. A., 23 (1990), 1063-1084.doi: 10.1088/0305-4470/23/7/014.


    Y. Hu, Heat equation with fractional white noise potential, Appl. Math. Optim., 43 (2001), 221-243.doi: 10.1007/s00245-001-0001-2.


    Y. Hu and D. Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Related Fields, 143 (2009), 285-328.doi: 10.1007/s00440-007-0127-5.


    C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the Kdv equation, J. Amer. Math. Soc., 9 (1996), 573-603.doi: 10.1090/S0894-0347-96-00200-7.


    C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.doi: 10.1215/S0012-7094-93-07101-3.


    A. N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. URSS (N.S.), 26 (1940), 115-118.


    B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, Calif., 1982.


    B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437.doi: 10.1137/1010093.


    B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anl., 202 (2003), 277-305.doi: 10.1016/S0022-1236(02)00065-4.


    Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, 1929, Springer-Verlag, Berlin, 2008.doi: 10.1007/978-3-540-75873-0.


    D. Nualart, Malliavin Calculus and Related topics, Probability and its Applications (New York), Springer Verlag, New York, 1995.doi: 10.1007/978-1-4757-2437-0.


    J. Printems, The stochastic Korteweg-de Vries equation in $L^2(\mathbb R)$, J. Differ. Equations, 153 (1999), 338-373.doi: 10.1006/jdeq.1998.3548.


    M. Scalerandi, A. Romano and C. A. Condat, Korteweg-de Vries solitons under additive stochastic perturbations, Phys. Rev. E, 58 (1998), 4166-4173.


    T. Tao, Multilinear weighted convolution of $ L^2 $ functions, and applications to nonlinear dispersive equation, Amer. J. Math., 123 (2001), 839-908.doi: 10.1353/ajm.2001.0035.


    S. Tindel, C. A. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186-204.doi: 10.1007/s00440-003-0282-2.


    G. Wang, M. Zeng and B. Guo, Stochastic Burgers' equation driven by fractional Brownian motion, J. Math. Anal. Appl., 371 (2010), 210-222.doi: 10.1016/j.jmaa.2010.05.015.

  • 加载中

Article Metrics

HTML views() PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint