December  2015, 35(12): 5555-5607. doi: 10.3934/dcds.2015.35.5555

Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian

1. 

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, UFR des Sciences, 33, rue Saint-Leu, 80039, Amiens Cedex 1, France

Received  November 2013 Revised  March 2014 Published  May 2015

We present a notion of weak solution for the Dirichlet problem driven by the fractional Laplacian, following the Stampacchia theory. Then, we study semilinear problems of the form $$ \left\lbrace\begin{array}{ll} (-\triangle)^s u = \pm\,f(x,u) & \hbox{ in }\Omega \\ u=g & \hbox{ in }\mathbb{R}^n\setminus\overline{\Omega}\\ Eu=h & \hbox{ on }\partial\Omega \end{array}\right. $$ when the nonlinearity $f$ and the boundary data $g,h$ are positive, but allowing the right-hand side to be both positive or negative and looking for solutions that blow up at the boundary. The operator $E$ is a weighted limit to the boundary: for example, if $\Omega$ is the ball $B$, there exists a constant $C(n,s)>0$ such that $$ Eu(\theta) = C(n,s) \lim_{x \to \theta}_{x\in B} u(x) {dist(x,\partial B)}^{1-s}, \hbox{ for all } \theta \in \partial B. $$ Our starting observation is the existence of $s$-harmonic functions which explode at the boundary: these will be used both as supersolutions in the case of negative right-hand side and as subsolutions in the positive case.
Citation: Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555
References:
[1]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, 2nd edition, (2001).  doi: 10.1007/978-1-4757-8137-3.  Google Scholar

[2]

C. Bandle, Asymptotic behavior of large solutions of elliptic equations,, Analele Universităţii din Craiova. Seria Matematică-Informatică, 32 (2005), 1.   Google Scholar

[3]

K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains,, Hiroshima Mathematical Journal, 29 (1999), 227.   Google Scholar

[4]

K. Bogdan, The boundary Harnack principle for the fractional Laplacian,, Studia Mathematica, 123 (1997), 43.   Google Scholar

[5]

K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential Analysis of Stable Processes and Its Extensions,, Lecture Notes in Mathematics, (2009).  doi: 10.1007/978-3-642-02141-1.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Communications in Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving the fractional Laplacian,, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, (2014).  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[8]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, Journal of Differential Equations, 257 (2014), 1457.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[9]

Z.-Q. Chen, Multidimensional symmetric stable processes,, The Korean Journal of Computational & Applied Mathematics, 6 (1999), 227.   Google Scholar

[10]

P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration,, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 19 (1987), 189.   Google Scholar

[11]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry,, Journal of Differential Equations, 249 (2010), 931.  doi: 10.1016/j.jde.2010.02.023.  Google Scholar

[12]

O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions,, Journal of Mathematical Analysis and Applications, 395 (2012), 806.  doi: 10.1016/j.jmaa.2012.05.085.  Google Scholar

[13]

J.-S. Dhersin and J.-F. Le Gall, Wiener's test for super-Brownian motion and the Brownian snake,, Probability Theory and Related Fields, 108 (1997), 103.  doi: 10.1007/s004400050103.  Google Scholar

[14]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions,, Advanced Nonlinear Studies, 7 (2007), 271.   Google Scholar

[16]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations,, Chapman & Hall/CRC, (2011).  doi: 10.1201/b10802.  Google Scholar

[17]

P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations,, Asymptotic Analysis, 78 (2012), 123.   Google Scholar

[18]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[19]

K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data,, Publicacions Matemàtiques, 55 (2011), 151.  doi: 10.5565/PUBLMAT_55111_07.  Google Scholar

[20]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Communications on Pure and Applied Mathematics, 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[21]

T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data,, Journal of Functional Analysis, 265 (2013), 890.  doi: 10.1016/j.jfa.2013.05.028.  Google Scholar

[22]

N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[23]

M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, Journal of Evolution Equations, 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

[24]

M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures,, De Gruyter, (2014).   Google Scholar

[25]

M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions,, Proceedings of the American Mathematical Society, 136 (2008), 2429.  doi: 10.1090/S0002-9939-08-09231-9.  Google Scholar

[26]

B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation,, Memoirs of the American Mathematical Society, 168 (2004).  doi: 10.1090/memo/0798.  Google Scholar

[27]

R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific Journal of Mathematics, 7 (1957), 1641.   Google Scholar

[28]

M. Riesz, Intégrales de Riemann-Liouville et potentiels,, Acta Sci. Math. (Szeged), 9 (1938), 1.   Google Scholar

[29]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, Journal de Mathématiques Pures et Appliquées (9), 101 (2014), 275.   Google Scholar

[30]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Communications on Pure and Applied Mathematics, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[31]

G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus,, Séminaire de Mathématiques Supérieures, (1965).   Google Scholar

show all references

References:
[1]

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, 2nd edition, (2001).  doi: 10.1007/978-1-4757-8137-3.  Google Scholar

[2]

C. Bandle, Asymptotic behavior of large solutions of elliptic equations,, Analele Universităţii din Craiova. Seria Matematică-Informatică, 32 (2005), 1.   Google Scholar

[3]

K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains,, Hiroshima Mathematical Journal, 29 (1999), 227.   Google Scholar

[4]

K. Bogdan, The boundary Harnack principle for the fractional Laplacian,, Studia Mathematica, 123 (1997), 43.   Google Scholar

[5]

K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential Analysis of Stable Processes and Its Extensions,, Lecture Notes in Mathematics, (2009).  doi: 10.1007/978-3-642-02141-1.  Google Scholar

[6]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Communications in Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[7]

H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving the fractional Laplacian,, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, (2014).  doi: 10.1016/j.anihpc.2014.08.001.  Google Scholar

[8]

H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, Journal of Differential Equations, 257 (2014), 1457.  doi: 10.1016/j.jde.2014.05.012.  Google Scholar

[9]

Z.-Q. Chen, Multidimensional symmetric stable processes,, The Korean Journal of Computational & Applied Mathematics, 6 (1999), 227.   Google Scholar

[10]

P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration,, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 19 (1987), 189.   Google Scholar

[11]

O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry,, Journal of Differential Equations, 249 (2010), 931.  doi: 10.1016/j.jde.2010.02.023.  Google Scholar

[12]

O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions,, Journal of Mathematical Analysis and Applications, 395 (2012), 806.  doi: 10.1016/j.jmaa.2012.05.085.  Google Scholar

[13]

J.-S. Dhersin and J.-F. Le Gall, Wiener's test for super-Brownian motion and the Brownian snake,, Probability Theory and Related Fields, 108 (1997), 103.  doi: 10.1007/s004400050103.  Google Scholar

[14]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[15]

S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions,, Advanced Nonlinear Studies, 7 (2007), 271.   Google Scholar

[16]

L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations,, Chapman & Hall/CRC, (2011).  doi: 10.1201/b10802.  Google Scholar

[17]

P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations,, Asymptotic Analysis, 78 (2012), 123.   Google Scholar

[18]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478.  doi: 10.1016/j.aim.2014.09.018.  Google Scholar

[19]

K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data,, Publicacions Matemàtiques, 55 (2011), 151.  doi: 10.5565/PUBLMAT_55111_07.  Google Scholar

[20]

J. B. Keller, On solutions of $\Delta u=f(u)$,, Communications on Pure and Applied Mathematics, 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[21]

T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data,, Journal of Functional Analysis, 265 (2013), 890.  doi: 10.1016/j.jfa.2013.05.028.  Google Scholar

[22]

N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[23]

M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, Journal of Evolution Equations, 3 (2003), 637.  doi: 10.1007/s00028-003-0122-y.  Google Scholar

[24]

M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures,, De Gruyter, (2014).   Google Scholar

[25]

M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions,, Proceedings of the American Mathematical Society, 136 (2008), 2429.  doi: 10.1090/S0002-9939-08-09231-9.  Google Scholar

[26]

B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation,, Memoirs of the American Mathematical Society, 168 (2004).  doi: 10.1090/memo/0798.  Google Scholar

[27]

R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific Journal of Mathematics, 7 (1957), 1641.   Google Scholar

[28]

M. Riesz, Intégrales de Riemann-Liouville et potentiels,, Acta Sci. Math. (Szeged), 9 (1938), 1.   Google Scholar

[29]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, Journal de Mathématiques Pures et Appliquées (9), 101 (2014), 275.   Google Scholar

[30]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Communications on Pure and Applied Mathematics, 60 (2007), 67.  doi: 10.1002/cpa.20153.  Google Scholar

[31]

G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus,, Séminaire de Mathématiques Supérieures, (1965).   Google Scholar

[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[4]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[5]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[6]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[7]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[8]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[9]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[10]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[11]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[12]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[13]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[14]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[15]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[16]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[17]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[19]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[20]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (31)

Other articles
by authors

[Back to Top]