December  2015, 35(12): 5609-5629. doi: 10.3934/dcds.2015.35.5609

Harmonic functions in union of chambers

1. 

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi, 55 - 20125 Milano, Italy

2. 

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino

Received  March 2014 Published  May 2015

We characterize the set of harmonic functions with Dirichlet boundary conditions in unbounded domains which are union of two different chambers. We analyse the asymptotic behavior of the solutions in connection with the changes in the domain's geometry; we classify all (possibly sign-changing) infinite energy solutions having given asymptotic frequency at the infinite ends of the domain; finally we sketch the case of several different chambers.
Citation: Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609
References:
[1]

L. Abatangelo, V. Felli and S. Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence,, Journal of Functional Analysis, 266 (2014), 3632.  doi: 10.1016/j.jfa.2013.11.019.  Google Scholar

[2]

L. Abatangelo, V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part II,, Journal of Differential Equations, 256 (2014), 3301.  doi: 10.1016/j.jde.2014.02.010.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Academic Press 2003., (2003).   Google Scholar

[4]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761.  doi: 10.3934/nhm.2007.2.761.  Google Scholar

[5]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752.  doi: 10.1051/cocv:2006020.  Google Scholar

[6]

B. E. J. Dahlberg, Estimates for harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275.  doi: 10.1007/BF00280445.  Google Scholar

[7]

V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part I,, J. Differential Equations, 255 (2013), 633.  doi: 10.1016/j.jde.2013.04.017.  Google Scholar

[8]

T. Gilbarg, Elliptic Partial Differential Equations,, Springer, (2001).   Google Scholar

[9]

V. Isakov, Inverse problems for Partial Differential Equations,, Springer, (2006).   Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[11]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995).   Google Scholar

[12]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer, (1996).  doi: 10.1007/978-1-4612-5338-9.  Google Scholar

[13]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585.  doi: 10.2977/prims/1195170848.  Google Scholar

[14]

Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification,, Duke Math. J., 57 (1988), 955.  doi: 10.1215/S0012-7094-88-05743-2.  Google Scholar

[15]

Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains,, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations (Knoxville, (1987), 218.   Google Scholar

[16]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst.H. Poincaré Anal. Non Linéaire, 11 (1994), 313.   Google Scholar

[17]

R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge Studies in Advanced Mathematics, (1995).  doi: 10.1017/CBO9780511526244.  Google Scholar

[18]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations,, Springer, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[19]

W. Rudin, Real and Complex Analysis,, McGraw-Hill, (1987).   Google Scholar

show all references

References:
[1]

L. Abatangelo, V. Felli and S. Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence,, Journal of Functional Analysis, 266 (2014), 3632.  doi: 10.1016/j.jfa.2013.11.019.  Google Scholar

[2]

L. Abatangelo, V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part II,, Journal of Differential Equations, 256 (2014), 3301.  doi: 10.1016/j.jde.2014.02.010.  Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Academic Press 2003., (2003).   Google Scholar

[4]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761.  doi: 10.3934/nhm.2007.2.761.  Google Scholar

[5]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752.  doi: 10.1051/cocv:2006020.  Google Scholar

[6]

B. E. J. Dahlberg, Estimates for harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275.  doi: 10.1007/BF00280445.  Google Scholar

[7]

V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part I,, J. Differential Equations, 255 (2013), 633.  doi: 10.1016/j.jde.2013.04.017.  Google Scholar

[8]

T. Gilbarg, Elliptic Partial Differential Equations,, Springer, (2001).   Google Scholar

[9]

V. Isakov, Inverse problems for Partial Differential Equations,, Springer, (2006).   Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[11]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995).   Google Scholar

[12]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer, (1996).  doi: 10.1007/978-1-4612-5338-9.  Google Scholar

[13]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585.  doi: 10.2977/prims/1195170848.  Google Scholar

[14]

Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification,, Duke Math. J., 57 (1988), 955.  doi: 10.1215/S0012-7094-88-05743-2.  Google Scholar

[15]

Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains,, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations (Knoxville, (1987), 218.   Google Scholar

[16]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst.H. Poincaré Anal. Non Linéaire, 11 (1994), 313.   Google Scholar

[17]

R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge Studies in Advanced Mathematics, (1995).  doi: 10.1017/CBO9780511526244.  Google Scholar

[18]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations,, Springer, (1984).  doi: 10.1007/978-1-4612-5282-5.  Google Scholar

[19]

W. Rudin, Real and Complex Analysis,, McGraw-Hill, (1987).   Google Scholar

[1]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[5]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[6]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[7]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[10]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[11]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[13]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[14]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[15]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]