December  2015, 35(12): 5665-5688. doi: 10.3934/dcds.2015.35.5665

Variational parabolic capacity

1. 

Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland

2. 

Department of Mathematics and Systems Analysis, Aalto University School of Science, FI-00076 Aalto, Finland

3. 

Department of Mathematics and Statistics, P.O. Box 35, FI-40014 University of Jyväskylä

Received  April 2014 Published  May 2015

We establish a variational parabolic capacity in a context of degenerate parabolic equations of $p$-Laplace type, and show that this capacity is equivalent to the nonlinear parabolic capacity. As an application, we estimate the capacities of several explicit sets.
Citation: Benny Avelin, Tuomo Kuusi, Mikko Parviainen. Variational parabolic capacity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5665-5688. doi: 10.3934/dcds.2015.35.5665
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften 314, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311.  doi: 10.1007/BF01176474.  Google Scholar

[3]

A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations,, Calc. Var. Partial Differential Equations, 52 (2015), 797.  doi: 10.1007/s00526-014-0734-9.  Google Scholar

[4]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[5]

V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles,, J. Reine Angew. Math., 650 (2011), 107.  doi: 10.1515/CRELLE.2011.006.  Google Scholar

[6]

J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations,, Potential Anal., 19 (2003), 99.  doi: 10.1023/A:1023248531928.  Google Scholar

[7]

L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation,, Arch. Rational Mech. Anal., 78 (1982), 293.  doi: 10.1007/BF00249583.  Google Scholar

[8]

R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations,, J. London Math. Soc., 21 (1980), 311.  doi: 10.1112/jlms/s2-21.2.311.  Google Scholar

[9]

R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity,, J. Differential Equations, 45 (1982), 374.  doi: 10.1016/0022-0396(82)90034-1.  Google Scholar

[10]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Unabridged republication of the 1993 original, (1993).   Google Scholar

[11]

T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, SIAM J. Math. Anal., 27 (1996), 661.  doi: 10.1137/0527036.  Google Scholar

[12]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions,, Math. Ann., 355 (2013), 1349.  doi: 10.1007/s00208-012-0825-x.  Google Scholar

[14]

K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[15]

J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions,, J. Funct. Anal., 258 (2010), 713.  doi: 10.1016/j.jfa.2009.08.009.  Google Scholar

[16]

J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory,, J. Fixed Point Theory Appl., 13 (2013), 291.  doi: 10.1007/s11784-013-0108-5.  Google Scholar

[17]

R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions,, J. Evol. Equ., 10 (2010), 1.  doi: 10.1007/s00028-009-0037-3.  Google Scholar

[18]

R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations,, J. Differential Equations, 246 (2009), 3668.  doi: 10.1016/j.jde.2009.02.006.  Google Scholar

[19]

T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation,, Differential Integral Equations, 22 (2009), 1211.   Google Scholar

[20]

E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore,, Ann. Mat. Pura Appl., 97 (1973), 83.  doi: 10.1007/BF02414910.  Google Scholar

[21]

E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui,, Ann. Mat. Pura Appl., 106 (1975), 11.  doi: 10.1007/BF02415021.  Google Scholar

[22]

N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[23]

P. Lindqvist and M. Parviainen, Irregular time dependent obstacles,, J. Funct. Anal., 263 (2012), 2458.  doi: 10.1016/j.jfa.2012.07.014.  Google Scholar

[24]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition,, Grund. der Math. Wiss., (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[25]

M. Pierre, Parabolic capacity and Sobolev spaces,, SIAM J. Math. Anal., 14 (1983), 522.  doi: 10.1137/0514044.  Google Scholar

[26]

L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations,, Proc. London Math. Soc., 48 (1984), 385.  doi: 10.1112/plms/s3-48.3.385.  Google Scholar

[27]

L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations,, Ann. Mat. Pura Appl., 141 (1985), 187.  doi: 10.1007/BF01763174.  Google Scholar

[28]

T. Ransford, Potential Theory in the Complex Plane,, London Mathematical Society Student Texts, (1995).  doi: 10.1017/CBO9780511623776.  Google Scholar

[29]

N. A. Watson, Thermal capacity,, Proc. London Math. Soc., 37 (1978), 342.  doi: 10.1112/plms/s3-37.2.342.  Google Scholar

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Grundlehren der Mathematischen Wissenschaften 314, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 183 (1983), 311.  doi: 10.1007/BF01176474.  Google Scholar

[3]

A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations,, Calc. Var. Partial Differential Equations, 52 (2015), 797.  doi: 10.1007/s00526-014-0734-9.  Google Scholar

[4]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data,, J. Funct. Anal., 147 (1997), 237.  doi: 10.1006/jfan.1996.3040.  Google Scholar

[5]

V. Bögelein, F. Duzaar and G. Mingione, Degenerate problems with irregular obstacles,, J. Reine Angew. Math., 650 (2011), 107.  doi: 10.1515/CRELLE.2011.006.  Google Scholar

[6]

J. Droniou, A. Porretta and A. Prignet, Parabolic capacity and soft measures for nonlinear equations,, Potential Anal., 19 (2003), 99.  doi: 10.1023/A:1023248531928.  Google Scholar

[7]

L. C. Evans and R. F. Gariepy, Wiener's test for the heat equation,, Arch. Rational Mech. Anal., 78 (1982), 293.  doi: 10.1007/BF00249583.  Google Scholar

[8]

R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations,, J. London Math. Soc., 21 (1980), 311.  doi: 10.1112/jlms/s2-21.2.311.  Google Scholar

[9]

R. Gariepy and W. P. Ziemer, Thermal capacity and boundary regularity,, J. Differential Equations, 45 (1982), 374.  doi: 10.1016/0022-0396(82)90034-1.  Google Scholar

[10]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Unabridged republication of the 1993 original, (1993).   Google Scholar

[11]

T. Kilpeläinen and P. Lindqvist, On the Dirichlet boundary value problem for a degenerate parabolic equation,, SIAM J. Math. Anal., 27 (1996), 661.  doi: 10.1137/0527036.  Google Scholar

[12]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[13]

J. Kinnunen, R. Korte, T. Kuusi and M. Parviainen, Nonlinear parabolic capacity and polar sets of superparabolic functions,, Math. Ann., 355 (2013), 1349.  doi: 10.1007/s00208-012-0825-x.  Google Scholar

[14]

K. Kinnunen and P. Lindqvist, Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation,, Ann. Mat. Pura Appl., 185 (2006), 411.  doi: 10.1007/s10231-005-0160-x.  Google Scholar

[15]

J. Kinnunen, T. Lukkari and M. Parviainen, An existence result for superparabolic functions,, J. Funct. Anal., 258 (2010), 713.  doi: 10.1016/j.jfa.2009.08.009.  Google Scholar

[16]

J. Kinnunen, T. Lukkari and M. Parviainen, Local approximation of superharmonic and superparabolic functions in nonlinear potential theory,, J. Fixed Point Theory Appl., 13 (2013), 291.  doi: 10.1007/s11784-013-0108-5.  Google Scholar

[17]

R. Korte, T. Kuusi and M. Parviainen, A connection between a general class of superparabolic functions and supersolutions,, J. Evol. Equ., 10 (2010), 1.  doi: 10.1007/s00028-009-0037-3.  Google Scholar

[18]

R. Korte, T. Kuusi and J. Siljander, Obstacle problem for nonlinear parabolic equations,, J. Differential Equations, 246 (2009), 3668.  doi: 10.1016/j.jde.2009.02.006.  Google Scholar

[19]

T. Kuusi, Lower semicontinuity of weak supersolutions to a nonlinear parabolic equation,, Differential Integral Equations, 22 (2009), 1211.   Google Scholar

[20]

E. Lanconelli, Sul problema di Dirichlet per l'equazione del calore,, Ann. Mat. Pura Appl., 97 (1973), 83.  doi: 10.1007/BF02414910.  Google Scholar

[21]

E. Lanconelli, Sul problema di Dirichlet per equazione paraboliche del secondo ordine a coefficiente discontinui,, Ann. Mat. Pura Appl., 106 (1975), 11.  doi: 10.1007/BF02415021.  Google Scholar

[22]

N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972).   Google Scholar

[23]

P. Lindqvist and M. Parviainen, Irregular time dependent obstacles,, J. Funct. Anal., 263 (2012), 2458.  doi: 10.1016/j.jfa.2012.07.014.  Google Scholar

[24]

V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition,, Grund. der Math. Wiss., (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[25]

M. Pierre, Parabolic capacity and Sobolev spaces,, SIAM J. Math. Anal., 14 (1983), 522.  doi: 10.1137/0514044.  Google Scholar

[26]

L. M. R. Saraiva, Removable singularities and quasilinear parabolic equations,, Proc. London Math. Soc., 48 (1984), 385.  doi: 10.1112/plms/s3-48.3.385.  Google Scholar

[27]

L. M. R. Saraiva, Removable singularities of solutions of degenerate quasilinear equations,, Ann. Mat. Pura Appl., 141 (1985), 187.  doi: 10.1007/BF01763174.  Google Scholar

[28]

T. Ransford, Potential Theory in the Complex Plane,, London Mathematical Society Student Texts, (1995).  doi: 10.1017/CBO9780511623776.  Google Scholar

[29]

N. A. Watson, Thermal capacity,, Proc. London Math. Soc., 37 (1978), 342.  doi: 10.1112/plms/s3-37.2.342.  Google Scholar

[1]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[2]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[3]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[4]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[5]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[6]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[7]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[9]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[10]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[11]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[13]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[14]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[15]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[16]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[17]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[18]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[20]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]