December  2015, 35(12): 5689-5709. doi: 10.3934/dcds.2015.35.5689

On the classical limit of the Schrödinger equation

1. 

Université Paris-Diderot, Laboratoire J.-L. Lions, BP187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

Ecole polytechnique, CMLS, 91128 Palaiseau Cedex, France, France

3. 

King Abdullah University of Science and Technology, MCSE Division, Thuwal 23955-6900, Saudi Arabia

Received  April 2014 Published  May 2015

This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749--766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.
Citation: Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689
References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, $2^{nd}$ edition, McGraw Hill, New York, 1966.

[2]

V. I. Arnold, Characteristic class entering in quantization condition, Func. Anal. Appl., 1 (1967), 1-14. doi: 10.1007/BF01075861.

[3]

V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5.

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.

[5]

C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile, Archive for Rational Mechanics and Analysis, 217 (2015), 71-111. doi: 10.1007/s00205-014-0829-7.

[6]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms, Comm. on Pure and App. Math., 50 (1997), 323-379. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

[7]

V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc., Providence, 1977.

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1990. doi: 10.1007/978-3-642-96750-4.

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, Heidelberg, 1983. doi: 10.1007/978-3-642-96750-4.

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-49938-1.

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-642-00136-9.

[12]

A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics, Review of Math. Phys., 12 (2000), 749-766. doi: 10.1142/S0129055X00000289.

[13]

J. Leray, Lagrangian Analysis and Quantum Mechanics, The MIT Press, Cambridge, Mass., 1981.

[14]

P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618. doi: 10.4171/RMI/143.

[15]

V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques, Dunod, Paris, 1972.

[16]

V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics, Reidel Publishing Company, Dordrecht, 1981.

[17]

J. Milnor, Morse Theory, Princeton Univ. Press, Princeton NJ, 1963.

[18]

D. Serre, Matrices, $2^{nd}$ edition, Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-7683-3.

[19]

J.-M. Souriau, Construction explicite de l'indice de Maslov, in Group Theoretical Methods in Physics (eds. A. Janner, T. Janssen and M. Boon), Lecture Notes in Phys. 50, Springer-Verlag, 1976, 117-148.

show all references

References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, $2^{nd}$ edition, McGraw Hill, New York, 1966.

[2]

V. I. Arnold, Characteristic class entering in quantization condition, Func. Anal. Appl., 1 (1967), 1-14. doi: 10.1007/BF01075861.

[3]

V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4612-1037-5.

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.

[5]

C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile, Archive for Rational Mechanics and Analysis, 217 (2015), 71-111. doi: 10.1007/s00205-014-0829-7.

[6]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms, Comm. on Pure and App. Math., 50 (1997), 323-379. doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.

[7]

V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc., Providence, 1977.

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1990. doi: 10.1007/978-3-642-96750-4.

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, Heidelberg, 1983. doi: 10.1007/978-3-642-96750-4.

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-540-49938-1.

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators, $2^{nd}$ edition, Springer-Verlag, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-642-00136-9.

[12]

A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics, Review of Math. Phys., 12 (2000), 749-766. doi: 10.1142/S0129055X00000289.

[13]

J. Leray, Lagrangian Analysis and Quantum Mechanics, The MIT Press, Cambridge, Mass., 1981.

[14]

P.-L. Lions and T. Paul, Sur les mesures de Wigner, Rev. Mat. Iberoamericana, 9 (1993), 553-618. doi: 10.4171/RMI/143.

[15]

V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques, Dunod, Paris, 1972.

[16]

V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics, Reidel Publishing Company, Dordrecht, 1981.

[17]

J. Milnor, Morse Theory, Princeton Univ. Press, Princeton NJ, 1963.

[18]

D. Serre, Matrices, $2^{nd}$ edition, Springer-Verlag, New York, 2010. doi: 10.1007/978-1-4419-7683-3.

[19]

J.-M. Souriau, Construction explicite de l'indice de Maslov, in Group Theoretical Methods in Physics (eds. A. Janner, T. Janssen and M. Boon), Lecture Notes in Phys. 50, Springer-Verlag, 1976, 117-148.

[1]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[2]

Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495

[3]

David Damanik, Zheng Gan. Spectral properties of limit-periodic Schrödinger operators. Communications on Pure and Applied Analysis, 2011, 10 (3) : 859-871. doi: 10.3934/cpaa.2011.10.859

[4]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[5]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[6]

Shuya Kanagawa, Ben T. Nohara. The nonlinear Schrödinger equation created by the vibrations of an elastic plate and its dimensional expansion. Conference Publications, 2013, 2013 (special) : 415-426. doi: 10.3934/proc.2013.2013.415

[7]

Lihui Chai, Shi Jin, Qin Li. Semi-classical models for the Schrödinger equation with periodic potentials and band crossings. Kinetic and Related Models, 2013, 6 (3) : 505-532. doi: 10.3934/krm.2013.6.505

[8]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[9]

Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018

[10]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[11]

Roberto de A. Capistrano–Filho, Márcio Cavalcante, Fernando A. Gallego. Forcing operators on star graphs applied for the cubic fourth order Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3399-3434. doi: 10.3934/dcdsb.2021190

[12]

Hiroshi Isozaki, Hisashi Morioka. A Rellich type theorem for discrete Schrödinger operators. Inverse Problems and Imaging, 2014, 8 (2) : 475-489. doi: 10.3934/ipi.2014.8.475

[13]

Fritz Gesztesy, Roger Nichols. On absence of threshold resonances for Schrödinger and Dirac operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3427-3460. doi: 10.3934/dcdss.2020243

[14]

Fengping Yao. Optimal regularity for parabolic Schrödinger operators. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1407-1414. doi: 10.3934/cpaa.2013.12.1407

[15]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[16]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[17]

Mohamad Rachid. Incompressible Navier-Stokes-Fourier limit from the Landau equation. Kinetic and Related Models, 2021, 14 (4) : 599-638. doi: 10.3934/krm.2021017

[18]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[19]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[20]

Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (2)

[Back to Top]