December  2015, 35(12): 5689-5709. doi: 10.3934/dcds.2015.35.5689

On the classical limit of the Schrödinger equation

1. 

Université Paris-Diderot, Laboratoire J.-L. Lions, BP187, 4 place Jussieu, 75252 Paris Cedex 05, France

2. 

Ecole polytechnique, CMLS, 91128 Palaiseau Cedex, France, France

3. 

King Abdullah University of Science and Technology, MCSE Division, Thuwal 23955-6900, Saudi Arabia

Received  April 2014 Published  May 2015

This paper provides an elementary proof of the classical limit of the Schrödinger equation with WKB type initial data and over arbitrary long finite time intervals. We use only the stationary phase method and the Laptev-Sigal simple and elegant construction of a parametrix for Schrödinger type equations [A. Laptev, I. Sigal, Review of Math. Phys. 12 (2000), 749--766]. We also explain in detail how the phase shifts across caustics obtained when using the Laptev-Sigal parametrix are related to the Maslov index.
Citation: Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689
References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable,, $2^{nd}$ edition, (1966).   Google Scholar

[2]

V. I. Arnold, Characteristic class entering in quantization condition,, Func. Anal. Appl., 1 (1967), 1.  doi: 10.1007/BF01075861.  Google Scholar

[3]

V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-1037-5.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile,, Archive for Rational Mechanics and Analysis, 217 (2015), 71.  doi: 10.1007/s00205-014-0829-7.  Google Scholar

[6]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms,, Comm. on Pure and App. Math., 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[7]

V. Guillemin and S. Sternberg, Geometric Asymptotics,, Amer. Math. Soc., (1977).   Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,, $2^{nd}$ edition, (1990).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-540-49938-1.  Google Scholar

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-642-00136-9.  Google Scholar

[12]

A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics,, Review of Math. Phys., 12 (2000), 749.  doi: 10.1142/S0129055X00000289.  Google Scholar

[13]

J. Leray, Lagrangian Analysis and Quantum Mechanics,, The MIT Press, (1981).   Google Scholar

[14]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[15]

V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques,, Dunod, (1972).   Google Scholar

[16]

V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics,, Reidel Publishing Company, (1981).   Google Scholar

[17]

J. Milnor, Morse Theory,, Princeton Univ. Press, (1963).   Google Scholar

[18]

D. Serre, Matrices,, $2^{nd}$ edition, (2010).  doi: 10.1007/978-1-4419-7683-3.  Google Scholar

[19]

J.-M. Souriau, Construction explicite de l'indice de Maslov,, in Group Theoretical Methods in Physics (eds. A. Janner, (1976), 117.   Google Scholar

show all references

References:
[1]

L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable,, $2^{nd}$ edition, (1966).   Google Scholar

[2]

V. I. Arnold, Characteristic class entering in quantization condition,, Func. Anal. Appl., 1 (1967), 1.  doi: 10.1007/BF01075861.  Google Scholar

[3]

V. I. Arnold, Geometrical Methods of the Theory of Ordinary Differential Equations,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4612-1037-5.  Google Scholar

[4]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Springer-Verlag, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[5]

C. Bardos, F. Golse, P. Markowich and T. Paul, Hamiltonian evolution of monokinetic measures with rough momentum profile,, Archive for Rational Mechanics and Analysis, 217 (2015), 71.  doi: 10.1007/s00205-014-0829-7.  Google Scholar

[6]

P. Gérard, P. Markowich, N. Mauser and F. Poupaud, Homogenization limit and Wigner transforms,, Comm. on Pure and App. Math., 50 (1997), 323.  doi: 10.1002/(SICI)1097-0312(199704)50:4<323::AID-CPA4>3.0.CO;2-C.  Google Scholar

[7]

V. Guillemin and S. Sternberg, Geometric Asymptotics,, Amer. Math. Soc., (1977).   Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,, $2^{nd}$ edition, (1990).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients,, Springer-Verlag, (1983).  doi: 10.1007/978-3-642-96750-4.  Google Scholar

[10]

L. Hörmander, The Analysis of Linear Partial Differential Operators III. Pseudo-differential Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-540-49938-1.  Google Scholar

[11]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,, $2^{nd}$ edition, (1994).  doi: 10.1007/978-3-642-00136-9.  Google Scholar

[12]

A. Laptev and I. Sigal, Global Fourier integral operators and semiclassical asymptotics,, Review of Math. Phys., 12 (2000), 749.  doi: 10.1142/S0129055X00000289.  Google Scholar

[13]

J. Leray, Lagrangian Analysis and Quantum Mechanics,, The MIT Press, (1981).   Google Scholar

[14]

P.-L. Lions and T. Paul, Sur les mesures de Wigner,, Rev. Mat. Iberoamericana, 9 (1993), 553.  doi: 10.4171/RMI/143.  Google Scholar

[15]

V. P. Maslov, Théorie des Perturbations et Méthodes Asymptotiques,, Dunod, (1972).   Google Scholar

[16]

V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation in Quantum Mechanics,, Reidel Publishing Company, (1981).   Google Scholar

[17]

J. Milnor, Morse Theory,, Princeton Univ. Press, (1963).   Google Scholar

[18]

D. Serre, Matrices,, $2^{nd}$ edition, (2010).  doi: 10.1007/978-1-4419-7683-3.  Google Scholar

[19]

J.-M. Souriau, Construction explicite de l'indice de Maslov,, in Group Theoretical Methods in Physics (eds. A. Janner, (1976), 117.   Google Scholar

[1]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[2]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[5]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[6]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[9]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[10]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[12]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[13]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[14]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[15]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[16]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[17]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[18]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[19]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[20]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

[Back to Top]