December  2015, 35(12): 5711-5723. doi: 10.3934/dcds.2015.35.5711

Eventual regularity for the parabolic minimal surface equation

1. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

2. 

Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa

3. 

Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy

Received  January 2014 Published  May 2015

We show that the parabolic minimal surface equation has an eventual regularization effect, that is, the solution becomes smooth after a strictly positive finite time.
Citation: Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711
References:
[1]

L. Ambrosio, Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime,, Edizioni della Scuola Normale, (1997).   Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[3]

F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516.  doi: 10.1006/jfan.2001.3829.  Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,, Oxford Mathematical Monographs, (2004).  doi: 10.1007/978-3-0348-7928-6.  Google Scholar

[5]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. Mat. Pura Appl., 135 (1983), 293.  doi: 10.1007/BF01781073.  Google Scholar

[6]

G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations,, Edizioni della Scuola Normale, (2013).  doi: 10.1007/978-88-7642-429-8.  Google Scholar

[7]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in $\mathbbR^N$,, J. Differential Equations, 184 (2002), 475.  doi: 10.1006/jdeq.2001.4150.  Google Scholar

[8]

G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem -div$(\frac{Du}{|Du|}) = u$,, SIAM J. Math. Anal., 36 (2005), 1095.  doi: 10.1137/S0036141003430007.  Google Scholar

[9]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Math. Notes, (1978).   Google Scholar

[10]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[11]

J. Buckland, Mean curvature flow with free boundary on smooth hypersurfaces,, J. Reine Angew. Math., 586 (2005), 71.  doi: 10.1515/crll.2005.2005.586.71.  Google Scholar

[12]

V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions,, Multiscale Model. Simul., 6 (2007), 879.  doi: 10.1137/070683003.  Google Scholar

[13]

V. Caselles, A. Chambolle and M. Novaga, Total variation in imaging,, in Handbook of Mathematical Methods in Imaging, (2011), 1016.  doi: 10.1007/978-0-387-92920-0_23.  Google Scholar

[14]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing,, Comm. Partial Differential Equations, 38 (2013), 780.  doi: 10.1080/03605302.2013.771508.  Google Scholar

[15]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis,, in Theoretical Foundations and Numerical Methods for Sparse Recovery, (2010), 263.  doi: 10.1515/9783110226157.263.  Google Scholar

[16]

K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature,, Math. Z., 180 (1982), 179.  doi: 10.1007/BF01318902.  Google Scholar

[17]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math., 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[18]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature,, Invent. Math., 105 (1991), 547.  doi: 10.1007/BF01232278.  Google Scholar

[19]

M. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.   Google Scholar

[20]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature,, J. Differential Equations, 36 (1980), 139.  doi: 10.1016/0022-0396(80)90081-9.  Google Scholar

[21]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[22]

A. Lichnewski and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340.  doi: 10.1016/0022-0396(78)90005-0.  Google Scholar

[23]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[24]

U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 55 (1974), 357.   Google Scholar

[25]

I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal argorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[26]

A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition,, Calc. Var. Partial Differential Equations, 4 (1996), 385.  doi: 10.1007/BF01190825.  Google Scholar

[27]

I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector,, J. Reine Angew. Math., 334 (1982), 27.  doi: 10.1515/crll.1982.334.27.  Google Scholar

show all references

References:
[1]

L. Ambrosio, Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime,, Edizioni della Scuola Normale, (1997).   Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[3]

F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516.  doi: 10.1006/jfan.2001.3829.  Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,, Oxford Mathematical Monographs, (2004).  doi: 10.1007/978-3-0348-7928-6.  Google Scholar

[5]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. Mat. Pura Appl., 135 (1983), 293.  doi: 10.1007/BF01781073.  Google Scholar

[6]

G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations,, Edizioni della Scuola Normale, (2013).  doi: 10.1007/978-88-7642-429-8.  Google Scholar

[7]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in $\mathbbR^N$,, J. Differential Equations, 184 (2002), 475.  doi: 10.1006/jdeq.2001.4150.  Google Scholar

[8]

G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem -div$(\frac{Du}{|Du|}) = u$,, SIAM J. Math. Anal., 36 (2005), 1095.  doi: 10.1137/S0036141003430007.  Google Scholar

[9]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Math. Notes, (1978).   Google Scholar

[10]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[11]

J. Buckland, Mean curvature flow with free boundary on smooth hypersurfaces,, J. Reine Angew. Math., 586 (2005), 71.  doi: 10.1515/crll.2005.2005.586.71.  Google Scholar

[12]

V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions,, Multiscale Model. Simul., 6 (2007), 879.  doi: 10.1137/070683003.  Google Scholar

[13]

V. Caselles, A. Chambolle and M. Novaga, Total variation in imaging,, in Handbook of Mathematical Methods in Imaging, (2011), 1016.  doi: 10.1007/978-0-387-92920-0_23.  Google Scholar

[14]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing,, Comm. Partial Differential Equations, 38 (2013), 780.  doi: 10.1080/03605302.2013.771508.  Google Scholar

[15]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis,, in Theoretical Foundations and Numerical Methods for Sparse Recovery, (2010), 263.  doi: 10.1515/9783110226157.263.  Google Scholar

[16]

K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature,, Math. Z., 180 (1982), 179.  doi: 10.1007/BF01318902.  Google Scholar

[17]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math., 130 (1989), 453.  doi: 10.2307/1971452.  Google Scholar

[18]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature,, Invent. Math., 105 (1991), 547.  doi: 10.1007/BF01232278.  Google Scholar

[19]

M. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.   Google Scholar

[20]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature,, J. Differential Equations, 36 (1980), 139.  doi: 10.1016/0022-0396(80)90081-9.  Google Scholar

[21]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984).  doi: 10.1007/978-1-4684-9486-0.  Google Scholar

[22]

A. Lichnewski and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340.  doi: 10.1016/0022-0396(78)90005-0.  Google Scholar

[23]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[24]

U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 55 (1974), 357.   Google Scholar

[25]

I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal argorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[26]

A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition,, Calc. Var. Partial Differential Equations, 4 (1996), 385.  doi: 10.1007/BF01190825.  Google Scholar

[27]

I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector,, J. Reine Angew. Math., 334 (1982), 27.  doi: 10.1515/crll.1982.334.27.  Google Scholar

[1]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[2]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[3]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[4]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[5]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[8]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[9]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[10]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[11]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[12]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[13]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[14]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[15]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[16]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[17]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[20]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

[Back to Top]