December  2015, 35(12): 5725-5767. doi: 10.3934/dcds.2015.35.5725

Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains

1. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain, Spain

2. 

Université Aix-Marseille, I2M, Centre de Mathématique et Informatique, Technopôle de Chateau-Giombert, Marseille, France

Received  April 2014 Published  May 2015

We consider nonlinear diffusive evolution equations posed on bounded space domains, governed by fractional Laplace-type operators, and involving porous medium type nonlinearities. We establish existence and uniqueness results in a suitable class of solutions using the theory of maximal monotone operators on dual spaces. Then we describe the long-time asymptotics in terms of separate-variables solutions of the friendly giant type. As a by-product, we obtain an existence and uniqueness result for semilinear elliptic non local equations with sub-linear nonlinearities. The Appendix contains a review of the theory of fractional Sobolev spaces and of the interpolation theory that are used in the rest of the paper.
Citation: Matteo Bonforte, Yannick Sire, Juan Luis Vázquez. Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5725-5767. doi: 10.3934/dcds.2015.35.5725
References:
[1]

R. A. Adams and J. F. Fournier, Sobolev spaces, Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[2]

D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Diff. Equations, 39 (1981), 378-412. doi: 10.1016/0022-0396(81)90065-6.

[3]

N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Tech. Report of Univ. of Kansas, 14 (1955), 77-94.

[4]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010), 293-315. doi: 10.1016/j.aim.2009.11.010.

[5]

P. Bénilan and M. G. Crandall, The continuous dependence on $\varphi $ of solutions of $u_t - \Delta \varphi (u) = 0$, Indiana Univ. Math. J., 30 (1981), 161-177. doi: 10.1512/iumj.1981.30.30014.

[6]

R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408. doi: 10.2140/pjm.1959.9.399.

[7]

M. Bonforte, G. Grillo and J. L. Vázquez, Fast diffusion flow on manifolds of nonpositive curvature, J. Evol. Eq., 8 (2008), 99-128. doi: 10.1007/s00028-007-0345-4.

[8]

M. Bonforte, G. Grillo and J. L. Vázquez, Behaviour near extinction for the fast diffusion equation on bounded domains, J. Math. Pures Appl., 97 (2012), 1-38. doi: 10.1016/j.matpur.2011.03.002.

[9]

M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Advances in Math., 250 (2014), 242-284. doi: 10.1016/j.aim.2013.09.018.

[10]

M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains,, Arch. Ration. Mech. Anal., ().  doi: 10.1007/s00205-015-0861-2.

[11]

M. Bonforte and J. L. Vázquez, Nonlinear Degenerate Diffusion Equations on bounded domains with Restricted Fractional Laplacian, in preparation, 2014.

[12]

H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Acad. Press, 1971, 101-156.

[13]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland, 1973.

[14]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.

[15]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[16]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations, Comm. Partial Diff. Eq., 36 (2011), 1353-1384. doi: 10.1080/03605302.2011.562954.

[17]

Z. Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113. doi: 10.1016/j.jfa.2005.05.004.

[18]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236. doi: 10.1016/j.jmaa.2004.03.034.

[19]

B. Dahlberg and C. Kenig, Nonnegative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders, J. Amer. Math. Soc., 1 (1988), 401-412. doi: 10.1090/S0894-0347-1988-0928264-9.

[20]

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990.

[21]

M. Crandall and M. Pierre, Regularizing Effects for $u_t=A\varphi(u)$ in $\mathbbL^1$, J. Funct. Anal., 45 (1982), 194-212. doi: 10.1016/0022-1236(82)90018-0.

[22]

E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511623721.

[23]

E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal., 59 (1984), 335-395. doi: 10.1016/0022-1236(84)90076-4.

[24]

E. Gagliardo, Proprietá di alcune classi di funzioni in piú variabili, Ric. Mat., 7 (1958), 102-137.

[25]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators, Adv. in Math., 268 (2015), 478-528. doi: 10.1016/j.aim.2014.09.018.

[26]

T. Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist., 22 (2002), 419-441.

[27]

T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.

[28]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

[29]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374. doi: 10.2307/2007032.

[30]

J.-L. Lions and E. Magenes, Non-homogeneous blems and Applications. Vol. I, Translated from the French by P. Kenneth, Band 181, Springer-Verlag, New York-Heidelberg, 1972.

[31]

V. G. Maz'ja, Sobolev Spaces, Translated from the Russian by T. O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-09922-3.

[32]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[33]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[34]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.

[35]

A. de Pablo, F. Quirós, A. Rodriguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017.

[36]

A. de Pablo, F. Quirós, A. Rodriguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Applied Math., 65 (2012), 1242-1284. doi: 10.1002/cpa.21408.

[37]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[38]

X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, Preprint, arXiv:1404.1197, 2014.

[39]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855. doi: 10.1017/S0308210512001783.

[40]

L. N. Slobodeckij, Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations, Leningrad. Gos. Ped. Inst. Ućep. Zap., 197 (1958), 54-112.

[41]

J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859. doi: 10.3934/dcds.2013.33.837.

[42]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978; revised version 1995.

[43]

J. L. Vázquez, The dirichlet problem for the porous medium equation in bounded domains. Asymptotic behaviour, Monatsh. Math., 142 (2004), 81-111. doi: 10.1007/s00605-004-0237-4.

[44]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.

[45]

J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc., 16 (2014), 769-803. doi: 10.4171/JEMS/446.

[46]

J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, in Nonlinear Partial Differential Equations, Abel Symp., 7, Springer, Heidelberg, 2012, 271-298. doi: 10.1007/978-3-642-25361-4_15.

[47]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Disc. Cont. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857.

show all references

References:
[1]

R. A. Adams and J. F. Fournier, Sobolev spaces, Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

[2]

D. G. Aronson and L. A. Peletier, Large time behaviour of solutions of the porous medium equation in bounded domains, J. Diff. Equations, 39 (1981), 378-412. doi: 10.1016/0022-0396(81)90065-6.

[3]

N. Aronszajn, Boundary values of functions with finite Dirichlet integral, Tech. Report of Univ. of Kansas, 14 (1955), 77-94.

[4]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems, Adv. Math., 224 (2010), 293-315. doi: 10.1016/j.aim.2009.11.010.

[5]

P. Bénilan and M. G. Crandall, The continuous dependence on $\varphi $ of solutions of $u_t - \Delta \varphi (u) = 0$, Indiana Univ. Math. J., 30 (1981), 161-177. doi: 10.1512/iumj.1981.30.30014.

[6]

R. M. Blumenthal and R. K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators, Pacific J. Math., 9 (1959), 399-408. doi: 10.2140/pjm.1959.9.399.

[7]

M. Bonforte, G. Grillo and J. L. Vázquez, Fast diffusion flow on manifolds of nonpositive curvature, J. Evol. Eq., 8 (2008), 99-128. doi: 10.1007/s00028-007-0345-4.

[8]

M. Bonforte, G. Grillo and J. L. Vázquez, Behaviour near extinction for the fast diffusion equation on bounded domains, J. Math. Pures Appl., 97 (2012), 1-38. doi: 10.1016/j.matpur.2011.03.002.

[9]

M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Advances in Math., 250 (2014), 242-284. doi: 10.1016/j.aim.2013.09.018.

[10]

M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains,, Arch. Ration. Mech. Anal., ().  doi: 10.1007/s00205-015-0861-2.

[11]

M. Bonforte and J. L. Vázquez, Nonlinear Degenerate Diffusion Equations on bounded domains with Restricted Fractional Laplacian, in preparation, 2014.

[12]

H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Acad. Press, 1971, 101-156.

[13]

H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans Les Espaces de Hilbert, North-Holland, 1973.

[14]

X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math., 224 (2010), 2052-2093. doi: 10.1016/j.aim.2010.01.025.

[15]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Diff. Eq., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.

[16]

A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations, Comm. Partial Diff. Eq., 36 (2011), 1353-1384. doi: 10.1080/03605302.2011.562954.

[17]

Z. Q. Chen and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains, J. Funct. Anal., 226 (2005), 90-113. doi: 10.1016/j.jfa.2005.05.004.

[18]

A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236. doi: 10.1016/j.jmaa.2004.03.034.

[19]

B. Dahlberg and C. Kenig, Nonnegative solutions of the initial-Dirichlet problem for generalized porous medium equations in cylinders, J. Amer. Math. Soc., 1 (1988), 401-412. doi: 10.1090/S0894-0347-1988-0928264-9.

[20]

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990.

[21]

M. Crandall and M. Pierre, Regularizing Effects for $u_t=A\varphi(u)$ in $\mathbbL^1$, J. Funct. Anal., 45 (1982), 194-212. doi: 10.1016/0022-1236(82)90018-0.

[22]

E. B. Davies, Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, 42, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511623721.

[23]

E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal., 59 (1984), 335-395. doi: 10.1016/0022-1236(84)90076-4.

[24]

E. Gagliardo, Proprietá di alcune classi di funzioni in piú variabili, Ric. Mat., 7 (1958), 102-137.

[25]

G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators, Adv. in Math., 268 (2015), 478-528. doi: 10.1016/j.aim.2014.09.018.

[26]

T. Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Statist., 22 (2002), 419-441.

[27]

T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist., 17 (1997), 339-364.

[28]

N. S. Landkof, Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972.

[29]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374. doi: 10.2307/2007032.

[30]

J.-L. Lions and E. Magenes, Non-homogeneous blems and Applications. Vol. I, Translated from the French by P. Kenneth, Band 181, Springer-Verlag, New York-Heidelberg, 1972.

[31]

V. G. Maz'ja, Sobolev Spaces, Translated from the Russian by T. O. Shaposhnikova, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-09922-3.

[32]

W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000.

[33]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.

[34]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115-162.

[35]

A. de Pablo, F. Quirós, A. Rodriguez and J. L. Vázquez, A fractional porous medium equation, Adv. Math., 226 (2011), 1378-1409. doi: 10.1016/j.aim.2010.07.017.

[36]

A. de Pablo, F. Quirós, A. Rodriguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Applied Math., 65 (2012), 1242-1284. doi: 10.1002/cpa.21408.

[37]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[38]

X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, Preprint, arXiv:1404.1197, 2014.

[39]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855. doi: 10.1017/S0308210512001783.

[40]

L. N. Slobodeckij, Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations, Leningrad. Gos. Ped. Inst. Ućep. Zap., 197 (1958), 54-112.

[41]

J. Tan, Positive solutions for non local elliptic problems, Discrete Contin. Dyn. Syst., 33 (2013), 837-859. doi: 10.3934/dcds.2013.33.837.

[42]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978; revised version 1995.

[43]

J. L. Vázquez, The dirichlet problem for the porous medium equation in bounded domains. Asymptotic behaviour, Monatsh. Math., 142 (2004), 81-111. doi: 10.1007/s00605-004-0237-4.

[44]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2007.

[45]

J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, J. Eur. Math. Soc., 16 (2014), 769-803. doi: 10.4171/JEMS/446.

[46]

J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, in Nonlinear Partial Differential Equations, Abel Symp., 7, Springer, Heidelberg, 2012, 271-298. doi: 10.1007/978-3-642-25361-4_15.

[47]

J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Disc. Cont. Dyn. Syst. Ser. S, 7 (2014), 857-885. doi: 10.3934/dcdss.2014.7.857.

[1]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[2]

Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927

[3]

Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241

[4]

Nikolaos Roidos, Yuanzhen Shao. Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation. Evolution Equations and Control Theory, 2022, 11 (3) : 793-825. doi: 10.3934/eect.2021026

[5]

Juan-Luis Vázquez. Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 857-885. doi: 10.3934/dcdss.2014.7.857

[6]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[7]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[8]

Kashif Ali Abro, Ilyas Khan. MHD flow of fractional Newtonian fluid embedded in a porous medium via Atangana-Baleanu fractional derivatives. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 377-387. doi: 10.3934/dcdss.2020021

[9]

Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053

[10]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[11]

Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901

[12]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[13]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[14]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[15]

Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems and Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

[16]

Xiaohua Jing, Masahiro Yamamoto. Simultaneous uniqueness for multiple parameters identification in a fractional diffusion-wave equation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022019

[17]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2279-2290. doi: 10.3934/cpaa.2021069

[18]

Siwei Duo, Hong Wang, Yanzhi Zhang. A comparative study on nonlocal diffusion operators related to the fractional Laplacian. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 231-256. doi: 10.3934/dcdsb.2018110

[19]

Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123

[20]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (175)
  • HTML views (0)
  • Cited by (49)

[Back to Top]