• Previous Article
    Short-time existence of the second order renormalization group flow in dimension three
  • DCDS Home
  • This Issue
  • Next Article
    Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains
December  2015, 35(12): 5769-5786. doi: 10.3934/dcds.2015.35.5769

On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations

1. 

Dipartimento di Matematica "Federigo Enriques", Università degli Studi di Milano, Via Saldini 50, I-20133 Milano, Italy

Received  March 2014 Published  May 2015

In this brief note we study how the fractional mean curvature of order $s \in (0, 1)$ varies with respect to $C^{1, \alpha}$ diffeomorphisms. We prove that, if $\alpha > s$, then the variation under a $C^{1, \alpha}$ diffeomorphism $\Psi$ of the $s$-mean curvature of a set $E$ is controlled by the $C^{0, \alpha}$ norm of the Jacobian of $\Psi$. When $\alpha = 1$ we discuss the stability of these estimates as $s \rightarrow 1^-$ and comment on the consistency of our result with the classical framework.
Citation: Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769
References:
[1]

L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals,, Manuscripta Math., 134 (2011), 377.  doi: 10.1007/s00229-010-0399-4.  Google Scholar

[2]

N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature,, Numer. Funct. Anal. Optim., 35 (2014), 793.  doi: 10.1080/01630563.2014.901837.  Google Scholar

[3]

G. Albanese, A. Fiscella and E. Valdinoci, Gevrey regularity for integro-differential operators,, J. Math. Anal. Appl., 428 (2015), 1225.  doi: 10.1016/j.jmaa.2015.04.002.  Google Scholar

[4]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. Part I: The optimal profile problem,, Math. Ann., 310 (1998), 527.  doi: 10.1007/s002080050159.  Google Scholar

[5]

G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies,, European J. Appl. Math., 9 (1998), 261.  doi: 10.1017/S0956792598003453.  Google Scholar

[6]

B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 609.   Google Scholar

[7]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions,, Trans. Amer. Math. Soc., 367 (2015), 911.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[9]

L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111.  doi: 10.1002/cpa.20331.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[12]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation,, Arch. Ration. Mech. Anal., 200 (2011), 59.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[13]

L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces,, Calc. Var. Partial Differential Equations, 41 (2011), 203.  doi: 10.1007/s00526-010-0359-6.  Google Scholar

[14]

L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Adv. Math., 248 (2013), 843.  doi: 10.1016/j.aim.2013.08.007.  Google Scholar

[15]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the s-perimeter as s ↘ 0,, Discrete Contin. Dyn. Syst., 33 (2013), 2777.  doi: 10.3934/dcds.2013.33.2777.  Google Scholar

[17]

A. Figalli and E. Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces,, \emph{J. Reine Angew. Math.}, (2015).  doi: 10.1515/crelle-2015-0006.  Google Scholar

[18]

N. S. Landkof, Foundations of Modern Potential Theory,, Springer-Verlag, (1972).   Google Scholar

[19]

M. Ludwig, Anisotropic fractional perimeters,, J. Differential Geom., 96 (2014), 77.   Google Scholar

[20]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Ration. Mech. Anal., 98 (1987), 123.  doi: 10.1007/BF00251230.  Google Scholar

[21]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital. B (5), 14 (1977), 285.   Google Scholar

[22]

G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm,, Ann. Mat. Pura Appl., 192 (2013), 673.  doi: 10.1007/s10231-011-0243-9.  Google Scholar

[23]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479.  doi: 10.1016/j.anihpc.2012.01.006.  Google Scholar

[24]

O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2,, Calc. Var. Partial Differential Equations, 48 (2013), 33.  doi: 10.1007/s00526-012-0539-7.  Google Scholar

[25]

E. Valdinoci, A fractional framework for perimeters and phase transitions,, Milan J. Math., 81 (2013), 1.  doi: 10.1007/s00032-013-0199-x.  Google Scholar

show all references

References:
[1]

L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals,, Manuscripta Math., 134 (2011), 377.  doi: 10.1007/s00229-010-0399-4.  Google Scholar

[2]

N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature,, Numer. Funct. Anal. Optim., 35 (2014), 793.  doi: 10.1080/01630563.2014.901837.  Google Scholar

[3]

G. Albanese, A. Fiscella and E. Valdinoci, Gevrey regularity for integro-differential operators,, J. Math. Anal. Appl., 428 (2015), 1225.  doi: 10.1016/j.jmaa.2015.04.002.  Google Scholar

[4]

G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. Part I: The optimal profile problem,, Math. Ann., 310 (1998), 527.  doi: 10.1007/s002080050159.  Google Scholar

[5]

G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies,, European J. Appl. Math., 9 (1998), 261.  doi: 10.1017/S0956792598003453.  Google Scholar

[6]

B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 609.   Google Scholar

[7]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[8]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions,, Trans. Amer. Math. Soc., 367 (2015), 911.  doi: 10.1090/S0002-9947-2014-05906-0.  Google Scholar

[9]

L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces,, Comm. Pure Appl. Math., 63 (2010), 1111.  doi: 10.1002/cpa.20331.  Google Scholar

[10]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[11]

L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[12]

L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation,, Arch. Ration. Mech. Anal., 200 (2011), 59.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[13]

L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces,, Calc. Var. Partial Differential Equations, 41 (2011), 203.  doi: 10.1007/s00526-010-0359-6.  Google Scholar

[14]

L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments,, Adv. Math., 248 (2013), 843.  doi: 10.1016/j.aim.2013.08.007.  Google Scholar

[15]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[16]

S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the s-perimeter as s ↘ 0,, Discrete Contin. Dyn. Syst., 33 (2013), 2777.  doi: 10.3934/dcds.2013.33.2777.  Google Scholar

[17]

A. Figalli and E. Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces,, \emph{J. Reine Angew. Math.}, (2015).  doi: 10.1515/crelle-2015-0006.  Google Scholar

[18]

N. S. Landkof, Foundations of Modern Potential Theory,, Springer-Verlag, (1972).   Google Scholar

[19]

M. Ludwig, Anisotropic fractional perimeters,, J. Differential Geom., 96 (2014), 77.   Google Scholar

[20]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Ration. Mech. Anal., 98 (1987), 123.  doi: 10.1007/BF00251230.  Google Scholar

[21]

L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza,, Boll. Un. Mat. Ital. B (5), 14 (1977), 285.   Google Scholar

[22]

G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm,, Ann. Mat. Pura Appl., 192 (2013), 673.  doi: 10.1007/s10231-011-0243-9.  Google Scholar

[23]

O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479.  doi: 10.1016/j.anihpc.2012.01.006.  Google Scholar

[24]

O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2,, Calc. Var. Partial Differential Equations, 48 (2013), 33.  doi: 10.1007/s00526-012-0539-7.  Google Scholar

[25]

E. Valdinoci, A fractional framework for perimeters and phase transitions,, Milan J. Math., 81 (2013), 1.  doi: 10.1007/s00032-013-0199-x.  Google Scholar

[1]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[4]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[7]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[8]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[9]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[10]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[11]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[12]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[13]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[14]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[15]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[16]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[17]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[18]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[19]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]