\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations

Abstract Related Papers Cited by
  • In this brief note we study how the fractional mean curvature of order $s \in (0, 1)$ varies with respect to $C^{1, \alpha}$ diffeomorphisms. We prove that, if $\alpha > s$, then the variation under a $C^{1, \alpha}$ diffeomorphism $\Psi$ of the $s$-mean curvature of a set $E$ is controlled by the $C^{0, \alpha}$ norm of the Jacobian of $\Psi$. When $\alpha = 1$ we discuss the stability of these estimates as $s \rightarrow 1^-$ and comment on the consistency of our result with the classical framework.
    Mathematics Subject Classification: Primary: 35R11, 28A75, 49Q05; Secondary: 26B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Ambrosio, G. De Philippis and L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math., 134 (2011), 377-403.doi: 10.1007/s00229-010-0399-4.

    [2]

    N. Abatangelo and E. Valdinoci, A notion of nonlocal curvature, Numer. Funct. Anal. Optim., 35 (2014), 793-815.doi: 10.1080/01630563.2014.901837.

    [3]

    G. Albanese, A. Fiscella and E. Valdinoci, Gevrey regularity for integro-differential operators, J. Math. Anal. Appl., 428 (2015), 1225-1238.doi: 10.1016/j.jmaa.2015.04.002.

    [4]

    G. Alberti and G. Bellettini, A nonlocal anisotropic model for phase transitions. Part I: The optimal profile problem, Math. Ann., 310 (1998), 527-560.doi: 10.1007/s002080050159.

    [5]

    G. Alberti and G. Bellettini, A non-local anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies, European J. Appl. Math., 9 (1998), 261-284.doi: 10.1017/S0956792598003453.

    [6]

    B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 609-639.

    [7]

    X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.doi: 10.1016/j.anihpc.2013.02.001.

    [8]

    X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians II: Existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911-941.doi: 10.1090/S0002-9947-2014-05906-0.

    [9]

    L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.doi: 10.1002/cpa.20331.

    [10]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [11]

    L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62 (2009), 597-638.doi: 10.1002/cpa.20274.

    [12]

    L. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation, Arch. Ration. Mech. Anal., 200 (2011), 59-88.doi: 10.1007/s00205-010-0336-4.

    [13]

    L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240.doi: 10.1007/s00526-010-0359-6.

    [14]

    L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments, Adv. Math., 248 (2013), 843-871.doi: 10.1016/j.aim.2013.08.007.

    [15]

    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.

    [16]

    S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the s-perimeter as s ↘ 0, Discrete Contin. Dyn. Syst., 33 (2013), 2777-2790.doi: 10.3934/dcds.2013.33.2777.

    [17]

    A. Figalli and E. Valdinoci, Regularity and Bernstein-type results for nonlocal minimal surfaces, J. Reine Angew. Math., published online, (2015).doi: 10.1515/crelle-2015-0006.

    [18]

    N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, Berlin, 1972.

    [19]

    M. Ludwig, Anisotropic fractional perimeters, J. Differential Geom., 96 (2014), 77-93.

    [20]

    L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98 (1987), 123-142.doi: 10.1007/BF00251230.

    [21]

    L. Modica and S. Mortola, Un esempio di $\Gamma$-convergenza, Boll. Un. Mat. Ital. B (5), 14 (1977), 285-299.

    [22]

    G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl., 192 (2013), 673-718.doi: 10.1007/s10231-011-0243-9.

    [23]

    O. Savin and E. Valdinoci, $\Gamma$-convergence for nonlocal phase transitions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 479-500.doi: 10.1016/j.anihpc.2012.01.006.

    [24]

    O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differential Equations, 48 (2013), 33-39.doi: 10.1007/s00526-012-0539-7.

    [25]

    E. Valdinoci, A fractional framework for perimeters and phase transitions, Milan J. Math., 81 (2013), 1-23.doi: 10.1007/s00032-013-0199-x.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return