December  2015, 35(12): 5787-5798. doi: 10.3934/dcds.2015.35.5787

Short-time existence of the second order renormalization group flow in dimension three

1. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy, Italy

Received  January 2014 Published  May 2015

Given a compact three--manifold together with a Riemannian metric, we prove the short--time existence of a solution to the renormalization group flow, truncated at the second order term, under a suitable hypothesis on the sectional curvature of the initial metric.
Citation: Laura Cremaschi, Carlo Mantegazza. Short-time existence of the second order renormalization group flow in dimension three. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5787-5798. doi: 10.3934/dcds.2015.35.5787
References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. L. Besse, Einstein Manifolds,, Springer-Verlag, (2008).   Google Scholar

[3]

V. Bour, Fourth order curvature flows and geometric applications,, preprint, (2010).   Google Scholar

[4]

J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds,, Proc. Amer. Math. Soc., 134 (2006), 1803.  doi: 10.1090/S0002-9939-05-08204-3.  Google Scholar

[5]

M. Carfora, Renormalization group and the Ricci flow,, Milan J. Math., 78 (2010), 319.  doi: 10.1007/s00032-010-0110-y.  Google Scholar

[6]

M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow,, Classical Quantum Gravity, 5 (1988), 659.  doi: 10.1088/0264-9381/5/5/005.  Google Scholar

[7]

B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature,, Turkish J. Math., 28 (2004), 1.   Google Scholar

[8]

B. Chow and D. Knopf, The Ricci Flow: An Introduction,, Mathematical Surveys and Monographs, (2004).  doi: 10.1090/surv/110.  Google Scholar

[9]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors,, J. Diff. Geom., 18 (1983), 157.   Google Scholar

[10]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version),, in Collected Papers on Ricci Flow (eds. H.-D. Cao, (2003), 163.   Google Scholar

[11]

J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 109.  doi: 10.2307/2373037.  Google Scholar

[12]

D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions,, Phys. Rev. Lett., 45 (1980), 1057.  doi: 10.1103/PhysRevLett.45.1057.  Google Scholar

[13]

D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions,, Ann. Physics, 163 (1985), 318.  doi: 10.1016/0003-4916(85)90384-7.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).   Google Scholar

[15]

S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer-Verlag, (1990).  doi: 10.1007/978-3-642-97242-3.  Google Scholar

[16]

K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow,, J. Fixed Point Theory Appl., 14 (2013), 3.  doi: 10.1007/s11784-014-0162-7.  Google Scholar

[17]

K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries,, Comm. Anal. Geom., 21 (2013), 435.  doi: 10.4310/CAG.2013.v21.n2.a7.  Google Scholar

[18]

K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions,, preprint, (2014).   Google Scholar

[19]

C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models,, Lett. Math. Phys., 84 (2008), 149.  doi: 10.1007/s11005-008-0245-8.  Google Scholar

[20]

R. S. Hamilton, Three-manifolds with positive Ricci curvature,, J. Diff. Geom., 17 (1982), 255.   Google Scholar

[21]

I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action,, Nuclear Phys. B, 322 (1989), 431.  doi: 10.1016/0550-3213(89)90422-7.  Google Scholar

[22]

J. Lott, Renormalization group flow for general $\sigma$-models,, Comm. Math. Phys., 107 (1986), 165.  doi: 10.1007/BF01206956.  Google Scholar

[23]

C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds,, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857.   Google Scholar

[24]

T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions,, Classical Quantum Gravity, 26 (2009).  doi: 10.1088/0264-9381/26/10/105020.  Google Scholar

[25]

T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order,, Phys. Rev. D, 76 (2007).  doi: 10.1103/PhysRevD.76.045001.  Google Scholar

[26]

P. Topping, Lectures on the Ricci Flow,, London Mathematical Society Lecture Note Series, (2006).  doi: 10.1017/CBO9780511721465.  Google Scholar

[27]

A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy,, Phys. Rev. D, 75 (2007).  doi: 10.1103/PhysRevD.75.064024.  Google Scholar

show all references

References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. L. Besse, Einstein Manifolds,, Springer-Verlag, (2008).   Google Scholar

[3]

V. Bour, Fourth order curvature flows and geometric applications,, preprint, (2010).   Google Scholar

[4]

J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds,, Proc. Amer. Math. Soc., 134 (2006), 1803.  doi: 10.1090/S0002-9939-05-08204-3.  Google Scholar

[5]

M. Carfora, Renormalization group and the Ricci flow,, Milan J. Math., 78 (2010), 319.  doi: 10.1007/s00032-010-0110-y.  Google Scholar

[6]

M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow,, Classical Quantum Gravity, 5 (1988), 659.  doi: 10.1088/0264-9381/5/5/005.  Google Scholar

[7]

B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature,, Turkish J. Math., 28 (2004), 1.   Google Scholar

[8]

B. Chow and D. Knopf, The Ricci Flow: An Introduction,, Mathematical Surveys and Monographs, (2004).  doi: 10.1090/surv/110.  Google Scholar

[9]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors,, J. Diff. Geom., 18 (1983), 157.   Google Scholar

[10]

D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version),, in Collected Papers on Ricci Flow (eds. H.-D. Cao, (2003), 163.   Google Scholar

[11]

J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 109.  doi: 10.2307/2373037.  Google Scholar

[12]

D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions,, Phys. Rev. Lett., 45 (1980), 1057.  doi: 10.1103/PhysRevLett.45.1057.  Google Scholar

[13]

D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions,, Ann. Physics, 163 (1985), 318.  doi: 10.1016/0003-4916(85)90384-7.  Google Scholar

[14]

A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).   Google Scholar

[15]

S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer-Verlag, (1990).  doi: 10.1007/978-3-642-97242-3.  Google Scholar

[16]

K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow,, J. Fixed Point Theory Appl., 14 (2013), 3.  doi: 10.1007/s11784-014-0162-7.  Google Scholar

[17]

K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries,, Comm. Anal. Geom., 21 (2013), 435.  doi: 10.4310/CAG.2013.v21.n2.a7.  Google Scholar

[18]

K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions,, preprint, (2014).   Google Scholar

[19]

C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models,, Lett. Math. Phys., 84 (2008), 149.  doi: 10.1007/s11005-008-0245-8.  Google Scholar

[20]

R. S. Hamilton, Three-manifolds with positive Ricci curvature,, J. Diff. Geom., 17 (1982), 255.   Google Scholar

[21]

I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action,, Nuclear Phys. B, 322 (1989), 431.  doi: 10.1016/0550-3213(89)90422-7.  Google Scholar

[22]

J. Lott, Renormalization group flow for general $\sigma$-models,, Comm. Math. Phys., 107 (1986), 165.  doi: 10.1007/BF01206956.  Google Scholar

[23]

C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds,, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857.   Google Scholar

[24]

T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions,, Classical Quantum Gravity, 26 (2009).  doi: 10.1088/0264-9381/26/10/105020.  Google Scholar

[25]

T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order,, Phys. Rev. D, 76 (2007).  doi: 10.1103/PhysRevD.76.045001.  Google Scholar

[26]

P. Topping, Lectures on the Ricci Flow,, London Mathematical Society Lecture Note Series, (2006).  doi: 10.1017/CBO9780511721465.  Google Scholar

[27]

A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy,, Phys. Rev. D, 75 (2007).  doi: 10.1103/PhysRevD.75.064024.  Google Scholar

[1]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[5]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[6]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[7]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[8]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[9]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[10]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[13]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[14]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[15]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[16]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]