-
Previous Article
Extremal domains for the first eigenvalue in a general compact Riemannian manifold
- DCDS Home
- This Issue
-
Next Article
On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations
Short-time existence of the second order renormalization group flow in dimension three
1. | Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy, Italy |
References:
[1] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry,, Springer-Verlag, (1998).
doi: 10.1007/978-3-662-13006-3. |
[2] |
A. L. Besse, Einstein Manifolds,, Springer-Verlag, (2008).
|
[3] |
V. Bour, Fourth order curvature flows and geometric applications,, preprint, (2010). Google Scholar |
[4] |
J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds,, Proc. Amer. Math. Soc., 134 (2006), 1803.
doi: 10.1090/S0002-9939-05-08204-3. |
[5] |
M. Carfora, Renormalization group and the Ricci flow,, Milan J. Math., 78 (2010), 319.
doi: 10.1007/s00032-010-0110-y. |
[6] |
M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow,, Classical Quantum Gravity, 5 (1988), 659.
doi: 10.1088/0264-9381/5/5/005. |
[7] |
B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature,, Turkish J. Math., 28 (2004), 1.
|
[8] |
B. Chow and D. Knopf, The Ricci Flow: An Introduction,, Mathematical Surveys and Monographs, (2004).
doi: 10.1090/surv/110. |
[9] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors,, J. Diff. Geom., 18 (1983), 157.
|
[10] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version),, in Collected Papers on Ricci Flow (eds. H.-D. Cao, (2003), 163. Google Scholar |
[11] |
J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 109.
doi: 10.2307/2373037. |
[12] |
D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions,, Phys. Rev. Lett., 45 (1980), 1057.
doi: 10.1103/PhysRevLett.45.1057. |
[13] |
D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions,, Ann. Physics, 163 (1985), 318.
doi: 10.1016/0003-4916(85)90384-7. |
[14] |
A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).
|
[15] |
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer-Verlag, (1990).
doi: 10.1007/978-3-642-97242-3. |
[16] |
K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow,, J. Fixed Point Theory Appl., 14 (2013), 3.
doi: 10.1007/s11784-014-0162-7. |
[17] |
K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries,, Comm. Anal. Geom., 21 (2013), 435.
doi: 10.4310/CAG.2013.v21.n2.a7. |
[18] |
K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions,, preprint, (2014). Google Scholar |
[19] |
C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models,, Lett. Math. Phys., 84 (2008), 149.
doi: 10.1007/s11005-008-0245-8. |
[20] |
R. S. Hamilton, Three-manifolds with positive Ricci curvature,, J. Diff. Geom., 17 (1982), 255.
|
[21] |
I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action,, Nuclear Phys. B, 322 (1989), 431.
doi: 10.1016/0550-3213(89)90422-7. |
[22] |
J. Lott, Renormalization group flow for general $\sigma$-models,, Comm. Math. Phys., 107 (1986), 165.
doi: 10.1007/BF01206956. |
[23] |
C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds,, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857.
|
[24] |
T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions,, Classical Quantum Gravity, 26 (2009).
doi: 10.1088/0264-9381/26/10/105020. |
[25] |
T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order,, Phys. Rev. D, 76 (2007).
doi: 10.1103/PhysRevD.76.045001. |
[26] |
P. Topping, Lectures on the Ricci Flow,, London Mathematical Society Lecture Note Series, (2006).
doi: 10.1017/CBO9780511721465. |
[27] |
A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy,, Phys. Rev. D, 75 (2007).
doi: 10.1103/PhysRevD.75.064024. |
show all references
References:
[1] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry,, Springer-Verlag, (1998).
doi: 10.1007/978-3-662-13006-3. |
[2] |
A. L. Besse, Einstein Manifolds,, Springer-Verlag, (2008).
|
[3] |
V. Bour, Fourth order curvature flows and geometric applications,, preprint, (2010). Google Scholar |
[4] |
J. A. Buckland, Short-time existence of solutions to the cross curvature flow on 3-manifolds,, Proc. Amer. Math. Soc., 134 (2006), 1803.
doi: 10.1090/S0002-9939-05-08204-3. |
[5] |
M. Carfora, Renormalization group and the Ricci flow,, Milan J. Math., 78 (2010), 319.
doi: 10.1007/s00032-010-0110-y. |
[6] |
M. Carfora and A. Marzuoli, Model geometries in the space of Riemannian structures and Hamilton's flow,, Classical Quantum Gravity, 5 (1988), 659.
doi: 10.1088/0264-9381/5/5/005. |
[7] |
B. Chow and R. S. Hamilton, The cross curvature flow of 3-manifolds with negative sectional curvature,, Turkish J. Math., 28 (2004), 1.
|
[8] |
B. Chow and D. Knopf, The Ricci Flow: An Introduction,, Mathematical Surveys and Monographs, (2004).
doi: 10.1090/surv/110. |
[9] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors,, J. Diff. Geom., 18 (1983), 157.
|
[10] |
D. M. DeTurck, Deforming metrics in the direction of their Ricci tensors (improved version),, in Collected Papers on Ricci Flow (eds. H.-D. Cao, (2003), 163. Google Scholar |
[11] |
J. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds,, Amer. J. Math., 86 (1964), 109.
doi: 10.2307/2373037. |
[12] |
D. H. Friedan, Nonlinear models in $2+\varepsilon $ dimensions,, Phys. Rev. Lett., 45 (1980), 1057.
doi: 10.1103/PhysRevLett.45.1057. |
[13] |
D. H. Friedan, Nonlinear models in $2+\varepsilon$ dimensions,, Ann. Physics, 163 (1985), 318.
doi: 10.1016/0003-4916(85)90384-7. |
[14] |
A. Friedman, Partial Differential Equations of Parabolic Type,, Prentice-Hall Inc., (1964).
|
[15] |
S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry,, Springer-Verlag, (1990).
doi: 10.1007/978-3-642-97242-3. |
[16] |
K. Gimre, C. Guenther and J. Isenberg, A geometric introduction to the 2-loop renormalization group flow,, J. Fixed Point Theory Appl., 14 (2013), 3.
doi: 10.1007/s11784-014-0162-7. |
[17] |
K. Gimre, C. Guenther and J. Isenberg, Second-order renormalization group flow of three-dimensional homogeneous geometries,, Comm. Anal. Geom., 21 (2013), 435.
doi: 10.4310/CAG.2013.v21.n2.a7. |
[18] |
K. Gimre, C. Guenther and J. Isenberg, Short-time existence for the second order renormalization group flow in general dimensions,, preprint, (2014). Google Scholar |
[19] |
C. Guenther and T. A. Oliynyk, Stability of the (two-loop) renormalization group flow for nonlinear sigma models,, Lett. Math. Phys., 84 (2008), 149.
doi: 10.1007/s11005-008-0245-8. |
[20] |
R. S. Hamilton, Three-manifolds with positive Ricci curvature,, J. Diff. Geom., 17 (1982), 255.
|
[21] |
I. Jack, D. R. T. Jones and N. Mohammedi, A four-loop calculation of the metric $\beta$-function for the bosonic $\sigma$-model and the string effective action,, Nuclear Phys. B, 322 (1989), 431.
doi: 10.1016/0550-3213(89)90422-7. |
[22] |
J. Lott, Renormalization group flow for general $\sigma$-models,, Comm. Math. Phys., 107 (1986), 165.
doi: 10.1007/BF01206956. |
[23] |
C. Mantegazza and L. Martinazzi, A note on quasilinear parabolic equations on manifolds,, Ann. Sc. Norm. Sup. Pisa, 11 (2012), 857.
|
[24] |
T. A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions,, Classical Quantum Gravity, 26 (2009).
doi: 10.1088/0264-9381/26/10/105020. |
[25] |
T. A. Oliynyk, V. Suneeta and E. Woolgar, Metric for gradient renormalization group flow of the worldsheet sigma model beyond first order,, Phys. Rev. D, 76 (2007).
doi: 10.1103/PhysRevD.76.045001. |
[26] |
P. Topping, Lectures on the Ricci Flow,, London Mathematical Society Lecture Note Series, (2006).
doi: 10.1017/CBO9780511721465. |
[27] |
A. A. Tseytlin, Sigma model renormalization group flow, "central charge'' action and Perelman's entropy,, Phys. Rev. D, 75 (2007).
doi: 10.1103/PhysRevD.75.064024. |
[1] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[2] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[3] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[4] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[5] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[6] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[7] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[8] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[9] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[10] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[11] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[12] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[13] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[14] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[15] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[16] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[17] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[18] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[19] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[20] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]