-
Previous Article
Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems
- DCDS Home
- This Issue
-
Next Article
Extremal domains for the first eigenvalue in a general compact Riemannian manifold
Unique continuation properties for relativistic Schrödinger operators with a singular potential
1. | African Institute for Mathematical Sciences (A.I.M.S.) of Senegal, KM 2, Route de Joal, B.P. 1418, Mbour, Senegal |
2. | Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 55, 20125 Milano, Italy |
References:
[1] |
F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc., 8 (1983), 327-328.
doi: 10.1090/S0273-0979-1983-15106-6. |
[2] |
T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces, Probab. Math. Statist., 26 (2006), 155-173. |
[3] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001. |
[4] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[5] |
S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016. |
[6] |
Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets, Stochastic Process. Appl., 121 (2011), 1148-1172.
doi: 10.1016/j.spa.2011.01.004. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953. |
[9] |
M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.
doi: 10.1080/03605302.2013.825918. |
[10] |
V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, Journal of the European Mathematical Society, 13 (2011), 119-174.
doi: 10.4171/JEMS/246. |
[11] |
V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials, Discrete Contin. Dynam. Systems, 32 (2012), 3895-3956.
doi: 10.3934/dcds.2012.32.3895. |
[12] |
V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods, Milan J. Math., 80 (2012), 203-226.
doi: 10.1007/s00032-012-0174-y. |
[13] |
A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., published online, (2015).
doi: 10.1002/mma.3438. |
[14] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[15] |
J. Fröhlich and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[16] |
N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, 2nd edition, Grundlehren, 224, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.
doi: 10.1007/978-3-642-61798-0. |
[18] |
I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Comm. Math. Phys., 53 (1977), 285-294. |
[19] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein, Ann. of Math. (2), 121 (1985), 463-494.
doi: 10.2307/1971205. |
[20] |
T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[21] |
E. H. Lieb, The stability of matter: From atoms to stars, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1-49.
doi: 10.1090/S0273-0979-1990-15831-8. |
[22] |
E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[23] |
B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Math., Vol. 219, Longman 1990. |
[24] |
A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential, Comm. Partial Differential Equations, 40 (2015), 77-114.
doi: 10.1080/03605302.2014.905594. |
[25] |
I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. Amer. Math. Soc., 143 (2015), 1661-1664.
doi: 10.1090/S0002-9939-2014-12594-9. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970. |
[27] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[28] |
J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983.
doi: 10.3934/dcds.2011.31.975. |
[29] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent, Adv. Diff. Eq., 1 (1996), 241-264. |
[30] |
T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation, Geom. Funct. Anal., 2 (1992), 225-284.
doi: 10.1007/BF01896975. |
[31] |
D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.
doi: 10.1006/jfan.1999.3462. |
[32] |
R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , ().
|
show all references
References:
[1] |
F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc., 8 (1983), 327-328.
doi: 10.1090/S0273-0979-1983-15106-6. |
[2] |
T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces, Probab. Math. Statist., 26 (2006), 155-173. |
[3] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001. |
[4] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[5] |
S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432.
doi: 10.1016/j.aim.2010.07.016. |
[6] |
Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets, Stochastic Process. Appl., 121 (2011), 1148-1172.
doi: 10.1016/j.spa.2011.01.004. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953. |
[9] |
M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397.
doi: 10.1080/03605302.2013.825918. |
[10] |
V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, Journal of the European Mathematical Society, 13 (2011), 119-174.
doi: 10.4171/JEMS/246. |
[11] |
V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials, Discrete Contin. Dynam. Systems, 32 (2012), 3895-3956.
doi: 10.3934/dcds.2012.32.3895. |
[12] |
V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods, Milan J. Math., 80 (2012), 203-226.
doi: 10.1007/s00032-012-0174-y. |
[13] |
A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., published online, (2015).
doi: 10.1002/mma.3438. |
[14] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705.
doi: 10.1002/cpa.20186. |
[15] |
J. Fröhlich and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9. |
[16] |
N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, 2nd edition, Grundlehren, 224, Springer, Berlin-Heidelberg-New York-Tokyo, 1983.
doi: 10.1007/978-3-642-61798-0. |
[18] |
I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Comm. Math. Phys., 53 (1977), 285-294. |
[19] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein, Ann. of Math. (2), 121 (1985), 463-494.
doi: 10.2307/1971205. |
[20] |
T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[21] |
E. H. Lieb, The stability of matter: From atoms to stars, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1-49.
doi: 10.1090/S0273-0979-1990-15831-8. |
[22] |
E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[23] |
B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Math., Vol. 219, Longman 1990. |
[24] |
A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential, Comm. Partial Differential Equations, 40 (2015), 77-114.
doi: 10.1080/03605302.2014.905594. |
[25] |
I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. Amer. Math. Soc., 143 (2015), 1661-1664.
doi: 10.1090/S0002-9939-2014-12594-9. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970. |
[27] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[28] |
J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983.
doi: 10.3934/dcds.2011.31.975. |
[29] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent, Adv. Diff. Eq., 1 (1996), 241-264. |
[30] |
T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation, Geom. Funct. Anal., 2 (1992), 225-284.
doi: 10.1007/BF01896975. |
[31] |
D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144.
doi: 10.1006/jfan.1999.3462. |
[32] |
R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , ().
|
[1] |
Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623 |
[2] |
Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems and Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009 |
[3] |
Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control and Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165 |
[4] |
A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515 |
[5] |
Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5105-5139. doi: 10.3934/dcds.2021070 |
[6] |
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 |
[7] |
José G. Llorente. Mean value properties and unique continuation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185 |
[8] |
Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262 |
[9] |
Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 |
[10] |
Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
[11] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[12] |
Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309 |
[13] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[14] |
Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 |
[15] |
Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143 |
[16] |
Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31 |
[17] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[18] |
Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126 |
[19] |
Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure and Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191 |
[20] |
Ihyeok Seo. Carleman estimates for the Schrödinger operator and applications to unique continuation. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1013-1036. doi: 10.3934/cpaa.2012.11.1013 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]