• Previous Article
    Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems
  • DCDS Home
  • This Issue
  • Next Article
    Extremal domains for the first eigenvalue in a general compact Riemannian manifold
December  2015, 35(12): 5827-5867. doi: 10.3934/dcds.2015.35.5827

Unique continuation properties for relativistic Schrödinger operators with a singular potential

1. 

African Institute for Mathematical Sciences (A.I.M.S.) of Senegal, KM 2, Route de Joal, B.P. 1418, Mbour, Senegal

2. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 55, 20125 Milano, Italy

Received  December 2013 Published  May 2015

Asymptotics of solutions to relativistic fractional elliptic equations with Hardy type potentials is established in this paper. As a consequence, unique continuation properties are obtained.
Citation: Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827
References:
[1]

F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc., 8 (1983), 327-328. doi: 10.1090/S0273-0979-1983-15106-6.  Google Scholar

[2]

T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces, Probab. Math. Statist., 26 (2006), 155-173.  Google Scholar

[3]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53. doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[5]

S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432. doi: 10.1016/j.aim.2010.07.016.  Google Scholar

[6]

Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets, Stochastic Process. Appl., 121 (2011), 1148-1172. doi: 10.1016/j.spa.2011.01.004.  Google Scholar

[7]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[8]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.  Google Scholar

[9]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397. doi: 10.1080/03605302.2013.825918.  Google Scholar

[10]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, Journal of the European Mathematical Society, 13 (2011), 119-174. doi: 10.4171/JEMS/246.  Google Scholar

[11]

V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials, Discrete Contin. Dynam. Systems, 32 (2012), 3895-3956. doi: 10.3934/dcds.2012.32.3895.  Google Scholar

[12]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods, Milan J. Math., 80 (2012), 203-226. doi: 10.1007/s00032-012-0174-y.  Google Scholar

[13]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., published online, (2015). doi: 10.1002/mma.3438.  Google Scholar

[14]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705. doi: 10.1002/cpa.20186.  Google Scholar

[15]

J. Fröhlich and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30. doi: 10.1007/s00220-007-0272-9.  Google Scholar

[16]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268. doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, 2nd edition, Grundlehren, 224, Springer, Berlin-Heidelberg-New York-Tokyo, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Comm. Math. Phys., 53 (1977), 285-294.  Google Scholar

[19]

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein, Ann. of Math. (2), 121 (1985), 463-494. doi: 10.2307/1971205.  Google Scholar

[20]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111-1171. doi: 10.4171/JEMS/456.  Google Scholar

[21]

E. H. Lieb, The stability of matter: From atoms to stars, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1-49. doi: 10.1090/S0273-0979-1990-15831-8.  Google Scholar

[22]

E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.  Google Scholar

[23]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Math., Vol. 219, Longman 1990.  Google Scholar

[24]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential, Comm. Partial Differential Equations, 40 (2015), 77-114. doi: 10.1080/03605302.2014.905594.  Google Scholar

[25]

I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. Amer. Math. Soc., 143 (2015), 1661-1664. doi: 10.1090/S0002-9939-2014-12594-9.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[27]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.  Google Scholar

[28]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975.  Google Scholar

[29]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent, Adv. Diff. Eq., 1 (1996), 241-264.  Google Scholar

[30]

T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation, Geom. Funct. Anal., 2 (1992), 225-284. doi: 10.1007/BF01896975.  Google Scholar

[31]

D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144. doi: 10.1006/jfan.1999.3462.  Google Scholar

[32]

R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , ().   Google Scholar

show all references

References:
[1]

F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two, Bull. Amer. Math. Soc., 8 (1983), 327-328. doi: 10.1090/S0273-0979-1983-15106-6.  Google Scholar

[2]

T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces, Probab. Math. Statist., 26 (2006), 155-173.  Google Scholar

[3]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53. doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[5]

S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry, Adv. Math., 226 (2011), 1410-1432. doi: 10.1016/j.aim.2010.07.016.  Google Scholar

[6]

Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets, Stochastic Process. Appl., 121 (2011), 1148-1172. doi: 10.1016/j.spa.2011.01.004.  Google Scholar

[7]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573. doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[8]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.  Google Scholar

[9]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations, 39 (2014), 354-397. doi: 10.1080/03605302.2013.825918.  Google Scholar

[10]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, Journal of the European Mathematical Society, 13 (2011), 119-174. doi: 10.4171/JEMS/246.  Google Scholar

[11]

V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials, Discrete Contin. Dynam. Systems, 32 (2012), 3895-3956. doi: 10.3934/dcds.2012.32.3895.  Google Scholar

[12]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods, Milan J. Math., 80 (2012), 203-226. doi: 10.1007/s00032-012-0174-y.  Google Scholar

[13]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators, Math. Methods Appl. Sci., published online, (2015). doi: 10.1002/mma.3438.  Google Scholar

[14]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., 60 (2007), 1691-1705. doi: 10.1002/cpa.20186.  Google Scholar

[15]

J. Fröhlich and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30. doi: 10.1007/s00220-007-0272-9.  Google Scholar

[16]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation, Indiana Univ. Math. J., 35 (1986), 245-268. doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, 2nd edition, Grundlehren, 224, Springer, Berlin-Heidelberg-New York-Tokyo, 1983. doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Comm. Math. Phys., 53 (1977), 285-294.  Google Scholar

[19]

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein, Ann. of Math. (2), 121 (1985), 463-494. doi: 10.2307/1971205.  Google Scholar

[20]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111-1171. doi: 10.4171/JEMS/456.  Google Scholar

[21]

E. H. Lieb, The stability of matter: From atoms to stars, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1-49. doi: 10.1090/S0273-0979-1990-15831-8.  Google Scholar

[22]

E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/gsm/014.  Google Scholar

[23]

B. Opic and A. Kufner, Hardy-type Inequalities, Pitman Research Notes in Math., Vol. 219, Longman 1990.  Google Scholar

[24]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential, Comm. Partial Differential Equations, 40 (2015), 77-114. doi: 10.1080/03605302.2014.905594.  Google Scholar

[25]

I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. Amer. Math. Soc., 143 (2015), 1661-1664. doi: 10.1090/S0002-9939-2014-12594-9.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J. 1970.  Google Scholar

[27]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122. doi: 10.1080/03605301003735680.  Google Scholar

[28]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst., 31 (2011), 975-983. doi: 10.3934/dcds.2011.31.975.  Google Scholar

[29]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent, Adv. Diff. Eq., 1 (1996), 241-264.  Google Scholar

[30]

T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation, Geom. Funct. Anal., 2 (1992), 225-284. doi: 10.1007/BF01896975.  Google Scholar

[31]

D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal., 168 (1999), 121-144. doi: 10.1006/jfan.1999.3462.  Google Scholar

[32]

R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , ().   Google Scholar

[1]

Agnid Banerjee. A note on the unique continuation property for fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 623-626. doi: 10.3934/cpaa.2015.14.623

[2]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems & Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

[3]

Zhongqi Yin. A quantitative internal unique continuation for stochastic parabolic equations. Mathematical Control & Related Fields, 2015, 5 (1) : 165-176. doi: 10.3934/mcrf.2015.5.165

[4]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[5]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021070

[6]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[7]

José G. Llorente. Mean value properties and unique continuation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 185-199. doi: 10.3934/cpaa.2015.14.185

[8]

Peng Gao. Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2493-2510. doi: 10.3934/dcdsb.2018262

[9]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[10]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[11]

Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control & Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27

[12]

Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control & Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012

[13]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems & Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[14]

Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047

[15]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[16]

Soohyun Bae. Classification of positive solutions of semilinear elliptic equations with Hardy term. Conference Publications, 2013, 2013 (special) : 31-39. doi: 10.3934/proc.2013.2013.31

[17]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[18]

Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126

[19]

Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191

[20]

Jinggang Tan, Jingang Xiong. A Harnack inequality for fractional Laplace equations with lower order terms. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 975-983. doi: 10.3934/dcds.2011.31.975

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]