• Previous Article
    Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems
  • DCDS Home
  • This Issue
  • Next Article
    Extremal domains for the first eigenvalue in a general compact Riemannian manifold
December  2015, 35(12): 5827-5867. doi: 10.3934/dcds.2015.35.5827

Unique continuation properties for relativistic Schrödinger operators with a singular potential

1. 

African Institute for Mathematical Sciences (A.I.M.S.) of Senegal, KM 2, Route de Joal, B.P. 1418, Mbour, Senegal

2. 

Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 55, 20125 Milano, Italy

Received  December 2013 Published  May 2015

Asymptotics of solutions to relativistic fractional elliptic equations with Hardy type potentials is established in this paper. As a consequence, unique continuation properties are obtained.
Citation: Mouhamed Moustapha Fall, Veronica Felli. Unique continuation properties for relativistic Schrödinger operators with a singular potential. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5827-5867. doi: 10.3934/dcds.2015.35.5827
References:
[1]

F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc., 8 (1983), 327.  doi: 10.1090/S0273-0979-1983-15106-6.  Google Scholar

[2]

T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces,, Probab. Math. Statist., 26 (2006), 155.   Google Scholar

[3]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410.  doi: 10.1016/j.aim.2010.07.016.  Google Scholar

[6]

Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets,, Stochastic Process. Appl., 121 (2011), 1148.  doi: 10.1016/j.spa.2011.01.004.  Google Scholar

[7]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[8]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions,, Vol. II, (1953).   Google Scholar

[9]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations,, Comm. Partial Differential Equations, 39 (2014), 354.  doi: 10.1080/03605302.2013.825918.  Google Scholar

[10]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119.  doi: 10.4171/JEMS/246.  Google Scholar

[11]

V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials,, Discrete Contin. Dynam. Systems, 32 (2012), 3895.  doi: 10.3934/dcds.2012.32.3895.  Google Scholar

[12]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., 80 (2012), 203.  doi: 10.1007/s00032-012-0174-y.  Google Scholar

[13]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators,, Math. Methods Appl. Sci., (2015).  doi: 10.1002/mma.3438.  Google Scholar

[14]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.  doi: 10.1002/cpa.20186.  Google Scholar

[15]

J. Fröhlich and E. Lenzmann, Boson stars as solitary waves,, Comm. Math. Phys., 274 (2007), 1.  doi: 10.1007/s00220-007-0272-9.  Google Scholar

[16]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245.  doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order,, 2nd edition, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Comm. Math. Phys., 53 (1977), 285.   Google Scholar

[19]

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein,, Ann. of Math. (2), 121 (1985), 463.  doi: 10.2307/1971205.  Google Scholar

[20]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111.  doi: 10.4171/JEMS/456.  Google Scholar

[21]

E. H. Lieb, The stability of matter: From atoms to stars,, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1.  doi: 10.1090/S0273-0979-1990-15831-8.  Google Scholar

[22]

E. H. Lieb and M. Loss, Analysis,, 2nd edition, (2001).  doi: 10.1090/gsm/014.  Google Scholar

[23]

B. Opic and A. Kufner, Hardy-type Inequalities,, Pitman Research Notes in Math., (1990).   Google Scholar

[24]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential,, Comm. Partial Differential Equations, 40 (2015), 77.  doi: 10.1080/03605302.2014.905594.  Google Scholar

[25]

I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions,, Proc. Amer. Math. Soc., 143 (2015), 1661.  doi: 10.1090/S0002-9939-2014-12594-9.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[27]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092.  doi: 10.1080/03605301003735680.  Google Scholar

[28]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975.  doi: 10.3934/dcds.2011.31.975.  Google Scholar

[29]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent,, Adv. Diff. Eq., 1 (1996), 241.   Google Scholar

[30]

T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225.  doi: 10.1007/BF01896975.  Google Scholar

[31]

D. Yafaev, Sharp constants in the Hardy-Rellich inequalities,, J. Funct. Anal., 168 (1999), 121.  doi: 10.1006/jfan.1999.3462.  Google Scholar

[32]

R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , ().   Google Scholar

show all references

References:
[1]

F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc., 8 (1983), 327.  doi: 10.1090/S0273-0979-1983-15106-6.  Google Scholar

[2]

T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces,, Probab. Math. Statist., 26 (2006), 155.   Google Scholar

[3]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[4]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[5]

S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410.  doi: 10.1016/j.aim.2010.07.016.  Google Scholar

[6]

Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets,, Stochastic Process. Appl., 121 (2011), 1148.  doi: 10.1016/j.spa.2011.01.004.  Google Scholar

[7]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[8]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions,, Vol. II, (1953).   Google Scholar

[9]

M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations,, Comm. Partial Differential Equations, 39 (2014), 354.  doi: 10.1080/03605302.2013.825918.  Google Scholar

[10]

V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119.  doi: 10.4171/JEMS/246.  Google Scholar

[11]

V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials,, Discrete Contin. Dynam. Systems, 32 (2012), 3895.  doi: 10.3934/dcds.2012.32.3895.  Google Scholar

[12]

V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., 80 (2012), 203.  doi: 10.1007/s00032-012-0174-y.  Google Scholar

[13]

A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators,, Math. Methods Appl. Sci., (2015).  doi: 10.1002/mma.3438.  Google Scholar

[14]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.  doi: 10.1002/cpa.20186.  Google Scholar

[15]

J. Fröhlich and E. Lenzmann, Boson stars as solitary waves,, Comm. Math. Phys., 274 (2007), 1.  doi: 10.1007/s00220-007-0272-9.  Google Scholar

[16]

N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245.  doi: 10.1512/iumj.1986.35.35015.  Google Scholar

[17]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order,, 2nd edition, (1983).  doi: 10.1007/978-3-642-61798-0.  Google Scholar

[18]

I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Comm. Math. Phys., 53 (1977), 285.   Google Scholar

[19]

D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein,, Ann. of Math. (2), 121 (1985), 463.  doi: 10.2307/1971205.  Google Scholar

[20]

T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111.  doi: 10.4171/JEMS/456.  Google Scholar

[21]

E. H. Lieb, The stability of matter: From atoms to stars,, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1.  doi: 10.1090/S0273-0979-1990-15831-8.  Google Scholar

[22]

E. H. Lieb and M. Loss, Analysis,, 2nd edition, (2001).  doi: 10.1090/gsm/014.  Google Scholar

[23]

B. Opic and A. Kufner, Hardy-type Inequalities,, Pitman Research Notes in Math., (1990).   Google Scholar

[24]

A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential,, Comm. Partial Differential Equations, 40 (2015), 77.  doi: 10.1080/03605302.2014.905594.  Google Scholar

[25]

I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions,, Proc. Amer. Math. Soc., 143 (2015), 1661.  doi: 10.1090/S0002-9939-2014-12594-9.  Google Scholar

[26]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[27]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092.  doi: 10.1080/03605301003735680.  Google Scholar

[28]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975.  doi: 10.3934/dcds.2011.31.975.  Google Scholar

[29]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent,, Adv. Diff. Eq., 1 (1996), 241.   Google Scholar

[30]

T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225.  doi: 10.1007/BF01896975.  Google Scholar

[31]

D. Yafaev, Sharp constants in the Hardy-Rellich inequalities,, J. Funct. Anal., 168 (1999), 121.  doi: 10.1006/jfan.1999.3462.  Google Scholar

[32]

R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , ().   Google Scholar

[1]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[2]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[3]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[4]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[5]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[6]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[7]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[8]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[9]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[10]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[11]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[12]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[13]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[14]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[15]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[16]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[17]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[18]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[19]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[20]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (21)

Other articles
by authors

[Back to Top]