-
Previous Article
Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems
- DCDS Home
- This Issue
-
Next Article
Extremal domains for the first eigenvalue in a general compact Riemannian manifold
Unique continuation properties for relativistic Schrödinger operators with a singular potential
1. | African Institute for Mathematical Sciences (A.I.M.S.) of Senegal, KM 2, Route de Joal, B.P. 1418, Mbour, Senegal |
2. | Università di Milano Bicocca, Dipartimento di Matematica e Applicazioni, Via Cozzi 55, 20125 Milano, Italy |
References:
[1] |
F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc., 8 (1983), 327.
doi: 10.1090/S0273-0979-1983-15106-6. |
[2] |
T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces,, Probab. Math. Statist., 26 (2006), 155.
|
[3] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.
doi: 10.1016/j.anihpc.2013.02.001. |
[4] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.
doi: 10.1080/03605300600987306. |
[5] |
S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410.
doi: 10.1016/j.aim.2010.07.016. |
[6] |
Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets,, Stochastic Process. Appl., 121 (2011), 1148.
doi: 10.1016/j.spa.2011.01.004. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions,, Vol. II, (1953).
|
[9] |
M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations,, Comm. Partial Differential Equations, 39 (2014), 354.
doi: 10.1080/03605302.2013.825918. |
[10] |
V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119.
doi: 10.4171/JEMS/246. |
[11] |
V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials,, Discrete Contin. Dynam. Systems, 32 (2012), 3895.
doi: 10.3934/dcds.2012.32.3895. |
[12] |
V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., 80 (2012), 203.
doi: 10.1007/s00032-012-0174-y. |
[13] |
A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators,, Math. Methods Appl. Sci., (2015).
doi: 10.1002/mma.3438. |
[14] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.
doi: 10.1002/cpa.20186. |
[15] |
J. Fröhlich and E. Lenzmann, Boson stars as solitary waves,, Comm. Math. Phys., 274 (2007), 1.
doi: 10.1007/s00220-007-0272-9. |
[16] |
N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order,, 2nd edition, (1983).
doi: 10.1007/978-3-642-61798-0. |
[18] |
I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Comm. Math. Phys., 53 (1977), 285.
|
[19] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein,, Ann. of Math. (2), 121 (1985), 463.
doi: 10.2307/1971205. |
[20] |
T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111.
doi: 10.4171/JEMS/456. |
[21] |
E. H. Lieb, The stability of matter: From atoms to stars,, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1.
doi: 10.1090/S0273-0979-1990-15831-8. |
[22] |
E. H. Lieb and M. Loss, Analysis,, 2nd edition, (2001).
doi: 10.1090/gsm/014. |
[23] |
B. Opic and A. Kufner, Hardy-type Inequalities,, Pitman Research Notes in Math., (1990).
|
[24] |
A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential,, Comm. Partial Differential Equations, 40 (2015), 77.
doi: 10.1080/03605302.2014.905594. |
[25] |
I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions,, Proc. Amer. Math. Soc., 143 (2015), 1661.
doi: 10.1090/S0002-9939-2014-12594-9. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).
|
[27] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092.
doi: 10.1080/03605301003735680. |
[28] |
J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975.
doi: 10.3934/dcds.2011.31.975. |
[29] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent,, Adv. Diff. Eq., 1 (1996), 241.
|
[30] |
T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225.
doi: 10.1007/BF01896975. |
[31] |
D. Yafaev, Sharp constants in the Hardy-Rellich inequalities,, J. Funct. Anal., 168 (1999), 121.
doi: 10.1006/jfan.1999.3462. |
[32] |
R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , (). Google Scholar |
show all references
References:
[1] |
F. J. Almgren Jr., $Q$ valued functions minimizing Dirichlet's integral and the regularity of area minimizing rectifiable currents up to codimension two,, Bull. Amer. Math. Soc., 8 (1983), 327.
doi: 10.1090/S0273-0979-1983-15106-6. |
[2] |
T. Byczkowski, M. Ryznar and H. Byczkowska, Bessel potentials, Green functions and exponential functionals on half-spaces,, Probab. Math. Statist., 26 (2006), 155.
|
[3] |
X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.
doi: 10.1016/j.anihpc.2013.02.001. |
[4] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.
doi: 10.1080/03605300600987306. |
[5] |
S.-Y. A. Chang and M. d. M. Gonzàlez, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410.
doi: 10.1016/j.aim.2010.07.016. |
[6] |
Z.-Q. Chen, P. Kim and R. Song, Green function estimates for relativistic stable processes in half-space-like open sets,, Stochastic Process. Appl., 121 (2011), 1148.
doi: 10.1016/j.spa.2011.01.004. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions,, Vol. II, (1953).
|
[9] |
M. M. Fall and V. Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations,, Comm. Partial Differential Equations, 39 (2014), 354.
doi: 10.1080/03605302.2013.825918. |
[10] |
V. Felli, A. Ferrero and S. Terracini, Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential,, Journal of the European Mathematical Society, 13 (2011), 119.
doi: 10.4171/JEMS/246. |
[11] |
V. Felli, A. Ferrero and S. Terracini, On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials,, Discrete Contin. Dynam. Systems, 32 (2012), 3895.
doi: 10.3934/dcds.2012.32.3895. |
[12] |
V. Felli, A. Ferrero and S. Terracini, A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods,, Milan J. Math., 80 (2012), 203.
doi: 10.1007/s00032-012-0174-y. |
[13] |
A. Fiscella, R. Servadei and E. Valdinoci, Asymptotically linear problems driven by fractional Laplacian operators,, Math. Methods Appl. Sci., (2015).
doi: 10.1002/mma.3438. |
[14] |
J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.
doi: 10.1002/cpa.20186. |
[15] |
J. Fröhlich and E. Lenzmann, Boson stars as solitary waves,, Comm. Math. Phys., 274 (2007), 1.
doi: 10.1007/s00220-007-0272-9. |
[16] |
N. Garofalo and F.-H. Lin, Monotonicity properties of variational integrals, $A_p$ weights and unique continuation,, Indiana Univ. Math. J., 35 (1986), 245.
doi: 10.1512/iumj.1986.35.35015. |
[17] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order,, 2nd edition, (1983).
doi: 10.1007/978-3-642-61798-0. |
[18] |
I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$,, Comm. Math. Phys., 53 (1977), 285.
|
[19] |
D. Jerison and C. E. Kenig, Unique continuation and absence of positive eigenvalues for Schrödinger operators. With an appendix by E. M. Stein,, Ann. of Math. (2), 121 (1985), 463.
doi: 10.2307/1971205. |
[20] |
T. Jin, Y. Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions,, J. Eur. Math. Soc. (JEMS), 16 (2014), 1111.
doi: 10.4171/JEMS/456. |
[21] |
E. H. Lieb, The stability of matter: From atoms to stars,, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 1.
doi: 10.1090/S0273-0979-1990-15831-8. |
[22] |
E. H. Lieb and M. Loss, Analysis,, 2nd edition, (2001).
doi: 10.1090/gsm/014. |
[23] |
B. Opic and A. Kufner, Hardy-type Inequalities,, Pitman Research Notes in Math., (1990).
|
[24] |
A. Rüland, Unique continuation for fractional Schrödinger equations with rough potential,, Comm. Partial Differential Equations, 40 (2015), 77.
doi: 10.1080/03605302.2014.905594. |
[25] |
I. Seo, Unique continuation for fractional Schrödinger operators in three and higher dimensions,, Proc. Amer. Math. Soc., 143 (2015), 1661.
doi: 10.1090/S0002-9939-2014-12594-9. |
[26] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).
|
[27] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. Partial Differential Equations, 35 (2010), 2092.
doi: 10.1080/03605301003735680. |
[28] |
J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975.
doi: 10.3934/dcds.2011.31.975. |
[29] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and a critical exponent,, Adv. Diff. Eq., 1 (1996), 241.
|
[30] |
T. H. Wolff, A property of measures in $\mathbbR^N$ and an application to unique continuation,, Geom. Funct. Anal., 2 (1992), 225.
doi: 10.1007/BF01896975. |
[31] |
D. Yafaev, Sharp constants in the Hardy-Rellich inequalities,, J. Funct. Anal., 168 (1999), 121.
doi: 10.1006/jfan.1999.3462. |
[32] |
R. Yang, On higher order extensions for the fractional Laplacian, preprint,, , (). Google Scholar |
[1] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[2] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[3] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[4] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[5] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[6] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[7] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[8] |
Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021062 |
[9] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[10] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[11] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[12] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[13] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[14] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[15] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[16] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[17] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[18] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[19] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[20] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]