December  2015, 35(12): 5869-5877. doi: 10.3934/dcds.2015.35.5869

Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems

1. 

LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens

Received  December 2013 Published  May 2015

We prove the symmetry of components and some Liouville-type theorems for, possibly sign changing, entire distributional solutions to a family of nonlinear elliptic systems encompassing models arising in Bose-Einstein condensation and in nonlinear optics. For these models we also provide precise classification results for non-negative solutions. The sharpness of our results is also discussed.
Citation: Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869
References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqns., 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[2]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271.  doi: 10.1007/BF01449045.  Google Scholar

[3]

L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

C. Cortàzar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in $\mathbbR^N$ with a non-Lipschitzian non-linearity,, Advances in Differential Equations, 1 (1996), 199.   Google Scholar

[5]

E. N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations,, Proc. Amer. Math. Soc., 131 (2003), 1891.  doi: 10.1090/S0002-9939-02-06733-3.  Google Scholar

[6]

A. Farina, Liouville-type theorems for elliptic problems,, in Handbook of Differential Equations, (2007), 61.  doi: 10.1016/S1874-5733(07)80005-2.  Google Scholar

[7]

D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: From theory to experiments,, J. Phys. A, 43 (2010).  doi: 10.1088/1751-8113/43/21/213001.  Google Scholar

[8]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Supp. Stud., 7a (1981), 369.   Google Scholar

[9]

F. Gazzola, J. Serrin and M. Tang, Existence of ground states and free boundary problems for quasilinear elliptic operators,, Advances in Differential Equations, 5 (2000), 1.   Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[12]

T. Kato, Schrödinger operators with singular potentials,, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 13 (1972), 135.  doi: 10.1007/BF02760233.  Google Scholar

[13]

J. B. Keller, On solutions of $ \Delta u = f (u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[14]

Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications,, Phys. Rep., 298 (1998), 81.  doi: 10.1016/S0370-1573(97)00073-2.  Google Scholar

[15]

T.-C. Lin and J.-C. Wei, Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 2755.  doi: 10.1088/0951-7715/19/12/002.  Google Scholar

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Differential Equations, 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04.008.  Google Scholar

[17]

E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.   Google Scholar

[18]

R. Osserman, On the inequality $\Delta u \ge f(u)$,, Pacific J. Math., 7 (1957), 1641.   Google Scholar

[19]

V. M. Perez-Garcia and J. B. Beitia, Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates,, Phys. Rev. A, 72 (2005).  doi: 10.1103/PhysRevA.72.033620.  Google Scholar

[20]

P. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators,, Indiana Univ. Math. J., 47 (1998), 501.  doi: 10.1512/iumj.1998.47.1517.  Google Scholar

[21]

P. Quittner and P. Souplet, Symmetry of components for semilinear elliptic systems,, SIAM J. Math. Anal., 44 (2012), 2545.  doi: 10.1137/11085428X.  Google Scholar

[22]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

[23]

J. Serrin and H. Zou, Symmetry of ground states of quasilinear elliptic equations,, Arch. Rational Mech. Anal., 148 (1999), 265.  doi: 10.1007/s002050050162.  Google Scholar

show all references

References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqns., 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[2]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271.  doi: 10.1007/BF01449045.  Google Scholar

[3]

L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271.  doi: 10.1002/cpa.3160420304.  Google Scholar

[4]

C. Cortàzar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in $\mathbbR^N$ with a non-Lipschitzian non-linearity,, Advances in Differential Equations, 1 (1996), 199.   Google Scholar

[5]

E. N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations,, Proc. Amer. Math. Soc., 131 (2003), 1891.  doi: 10.1090/S0002-9939-02-06733-3.  Google Scholar

[6]

A. Farina, Liouville-type theorems for elliptic problems,, in Handbook of Differential Equations, (2007), 61.  doi: 10.1016/S1874-5733(07)80005-2.  Google Scholar

[7]

D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: From theory to experiments,, J. Phys. A, 43 (2010).  doi: 10.1088/1751-8113/43/21/213001.  Google Scholar

[8]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Supp. Stud., 7a (1981), 369.   Google Scholar

[9]

F. Gazzola, J. Serrin and M. Tang, Existence of ground states and free boundary problems for quasilinear elliptic operators,, Advances in Differential Equations, 5 (2000), 1.   Google Scholar

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[11]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[12]

T. Kato, Schrödinger operators with singular potentials,, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 13 (1972), 135.  doi: 10.1007/BF02760233.  Google Scholar

[13]

J. B. Keller, On solutions of $ \Delta u = f (u)$,, Comm. Pure Appl. Math., 10 (1957), 503.  doi: 10.1002/cpa.3160100402.  Google Scholar

[14]

Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications,, Phys. Rep., 298 (1998), 81.  doi: 10.1016/S0370-1573(97)00073-2.  Google Scholar

[15]

T.-C. Lin and J.-C. Wei, Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 2755.  doi: 10.1088/0951-7715/19/12/002.  Google Scholar

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Differential Equations, 245 (2008), 2551.  doi: 10.1016/j.jde.2008.04.008.  Google Scholar

[17]

E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.   Google Scholar

[18]

R. Osserman, On the inequality $\Delta u \ge f(u)$,, Pacific J. Math., 7 (1957), 1641.   Google Scholar

[19]

V. M. Perez-Garcia and J. B. Beitia, Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates,, Phys. Rev. A, 72 (2005).  doi: 10.1103/PhysRevA.72.033620.  Google Scholar

[20]

P. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators,, Indiana Univ. Math. J., 47 (1998), 501.  doi: 10.1512/iumj.1998.47.1517.  Google Scholar

[21]

P. Quittner and P. Souplet, Symmetry of components for semilinear elliptic systems,, SIAM J. Math. Anal., 44 (2012), 2545.  doi: 10.1137/11085428X.  Google Scholar

[22]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897.  doi: 10.1512/iumj.2000.49.1893.  Google Scholar

[23]

J. Serrin and H. Zou, Symmetry of ground states of quasilinear elliptic equations,, Arch. Rational Mech. Anal., 148 (1999), 265.  doi: 10.1007/s002050050162.  Google Scholar

[1]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[2]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[3]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[4]

Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020128

[5]

Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004

[6]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[7]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[8]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[9]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[10]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[11]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[12]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[15]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[16]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[17]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[18]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[19]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[20]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]