Citation: |
[1] |
R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975. |
[2] |
S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Comm. Pure Appl. Math., 12 (1959), 623-727.doi: 10.1002/cpa.3160120405. |
[3] |
B. Akesson, Understanding Bridges Collapses, CRC Press, Taylor & Francis Group, London, 2008. |
[4] |
O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge, Federal Works Agency, 1941. |
[5] |
G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse, Appl. Math. Modelling, 39 (2015), 901-912.doi: 10.1016/j.apm.2014.06.022. |
[6] |
E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Diff. Eq., 251 (2011), 2696-2727.doi: 10.1016/j.jde.2011.05.036. |
[7] |
J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Engineering & Structural Dynamics, 23 (1994), 1351-1367.doi: 10.1002/eqe.4290231206. |
[8] |
K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der direkten methoden der variationsrechnung), Math. Ann., 98 (1928), 205-247.doi: 10.1007/BF01451590. |
[9] |
P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 79 (2009), 051110, 11pp.doi: 10.1103/PhysRevE.79.051110. |
[10] |
F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Diff. Equ., (2013), 1-47, |
[11] |
F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010.doi: 10.1007/978-3-642-12245-3. |
[12] |
F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations, Nonlinear Analysis, 74 (2011), 6696-6711.doi: 10.1016/j.na.2011.06.049. |
[13] |
F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Rat. Mech. Anal., 207 (2013), 717-752.doi: 10.1007/s00205-012-0569-5. |
[14] |
D. Imhof, Risk Assessment of Existing Bridge Structure, PhD Dissertation, University of Cambridge, 2004. See also http://www.bridgeforum.org/dir/collapse/type/ for the update of the Bridge failure database. |
[15] |
T. Kawada, History of the modern suspension bridge: Solving the dilemma between economy and stiffness, ASCE Press, 2010.doi: 10.1061/9780784410189. |
[16] |
G. R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe, J. Reine Angew. Math., 1850 (2009), 51-88.doi: 10.1515/crll.1850.40.51. |
[17] |
W. Lacarbonara, Nonlinear Structural Mechanics, Springer, 2013.doi: 10.1007/978-1-4419-1276-3. |
[18] |
R. S. Lakes, Foam structures with a negative Poisson's ratio, Science, 235 (1987), 1038-1040.doi: 10.1126/science.235.4792.1038. |
[19] |
A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. non Lin., 4 (1987), 243-274. |
[20] |
A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.doi: 10.1137/1032120. |
[21] |
M. Lévy, Sur l'équilibre élastique d'une plaque rectangulaire, Comptes Rendus Acad. Sci. Paris, 129 (1899), 535-539. |
[22] |
A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Fourth edition, Cambridge Univ. Press, 1927. |
[23] |
E. H. Mansfield, The Bending and Stretching of Plates, Second edition, Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511525193. |
[24] |
V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains, Mathematical Surveys and Monographs, 162, American Mathematical Society, 2010.doi: 10.1090/surv/162. |
[25] |
P. J. McKenna, Torsional oscillations in suspension bridges revisited: Fixing an old approximation, Amer. Math. Monthly, 106 (1999), 1-18.doi: 10.2307/2589581. |
[26] |
P. J. McKenna and C. Ó. Tuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response, Amer. Math. Monthly, 108 (2001), 738-745.doi: 10.2307/2695617. |
[27] |
P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rat. Mech. Anal., 98 (1987), 167-177.doi: 10.1007/BF00251232. |
[28] |
P. J. McKenna and W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703-715.doi: 10.1137/0150041. |
[29] |
A. Nadai, Die Elastischen Platten, Springer-Verlag, Berlin, 1968 (first edition in 1925).doi: 10.1007/978-3-642-99170-7. |
[30] |
C. L. Navier, Extraits des recherches sur la flexion des plans élastiques, Bulletin des Sciences de la Société Philomathique de Paris, (1823), 92-102. |
[31] |
R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound and Vibration, 307 (2007), 894-905.doi: 10.1016/j.jsv.2007.07.036. |
[32] |
R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability, ASCE Press, 2001.doi: 10.1061/9780784405420. |
[33] |
E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker Inc., New York, 2001.doi: 10.1201/9780203908723. |
[34] |
Tacoma Narrows Bridge Collapse, http://www.youtube.com/watch?v=3mclp9QmCGs, 1940. |
[35] |
O. Zanaboni, Risoluzione, in serie semplice, della lastra rettangolare appoggiata, sottoposta all'azione di un carico concentrato comunque disposto, Annali Mat. Pura Appl., 19 (1940), 107-124.doi: 10.1007/BF02410542. |