• Previous Article
    Harnack type inequalities for some doubly nonlinear singular parabolic equations
  • DCDS Home
  • This Issue
  • Next Article
    Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems
December  2015, 35(12): 5879-5908. doi: 10.3934/dcds.2015.35.5879

A partially hinged rectangular plate as a model for suspension bridges

1. 

Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy

2. 

Dipartimento di Matematica Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano

Received  July 2013 Published  May 2015

A plate model describing the statics and dynamics of a suspension bridge is suggested. A partially hinged plate subject to nonlinear restoring hangers is considered. The whole theory from linear problems, through nonlinear stationary equations, ending with the full hyperbolic evolution equation is studied. This paper aims to be the starting point for more refined models.
Citation: Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5879-5908. doi: 10.3934/dcds.2015.35.5879
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

B. Akesson, Understanding Bridges Collapses,, CRC Press, (2008).   Google Scholar

[4]

O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge,, Federal Works Agency, (1941).   Google Scholar

[5]

G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse,, Appl. Math. Modelling, 39 (2015), 901.  doi: 10.1016/j.apm.2014.06.022.  Google Scholar

[6]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations,, J. Diff. Eq., 251 (2011), 2696.  doi: 10.1016/j.jde.2011.05.036.  Google Scholar

[7]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges,, Earthquake Engineering & Structural Dynamics, 23 (1994), 1351.  doi: 10.1002/eqe.4290231206.  Google Scholar

[8]

K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der direkten methoden der variationsrechnung),, Math. Ann., 98 (1928), 205.  doi: 10.1007/BF01451590.  Google Scholar

[9]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051110.  Google Scholar

[10]

F. Gazzola, Nonlinearity in oscillating bridges,, Electron. J. Diff. Equ., (2013), 1.   Google Scholar

[11]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems,, Lecture Notes in Mathematics, (1991).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[12]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,, Nonlinear Analysis, 74 (2011), 6696.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[13]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations,, Arch. Rat. Mech. Anal., 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[14]

D. Imhof, Risk Assessment of Existing Bridge Structure,, PhD Dissertation, (2004).   Google Scholar

[15]

T. Kawada, History of the modern suspension bridge: Solving the dilemma between economy and stiffness,, ASCE Press, (2010).  doi: 10.1061/9780784410189.  Google Scholar

[16]

G. R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe,, J. Reine Angew. Math., 1850 (2009), 51.  doi: 10.1515/crll.1850.40.51.  Google Scholar

[17]

W. Lacarbonara, Nonlinear Structural Mechanics,, Springer, (2013).  doi: 10.1007/978-1-4419-1276-3.  Google Scholar

[18]

R. S. Lakes, Foam structures with a negative Poisson's ratio,, Science, 235 (1987), 1038.  doi: 10.1126/science.235.4792.1038.  Google Scholar

[19]

A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems,, Ann. Inst. H. Poincaré Anal. non Lin., 4 (1987), 243.   Google Scholar

[20]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[21]

M. Lévy, Sur l'équilibre élastique d'une plaque rectangulaire,, Comptes Rendus Acad. Sci. Paris, 129 (1899), 535.   Google Scholar

[22]

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity,, Fourth edition, (1927).   Google Scholar

[23]

E. H. Mansfield, The Bending and Stretching of Plates,, Second edition, (1989).  doi: 10.1017/CBO9780511525193.  Google Scholar

[24]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains,, Mathematical Surveys and Monographs, (2010).  doi: 10.1090/surv/162.  Google Scholar

[25]

P. J. McKenna, Torsional oscillations in suspension bridges revisited: Fixing an old approximation,, Amer. Math. Monthly, 106 (1999), 1.  doi: 10.2307/2589581.  Google Scholar

[26]

P. J. McKenna and C. Ó. Tuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response,, Amer. Math. Monthly, 108 (2001), 738.  doi: 10.2307/2695617.  Google Scholar

[27]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rat. Mech. Anal., 98 (1987), 167.  doi: 10.1007/BF00251232.  Google Scholar

[28]

P. J. McKenna and W. Walter, Travelling waves in a suspension bridge,, SIAM J. Appl. Math., 50 (1990), 703.  doi: 10.1137/0150041.  Google Scholar

[29]

A. Nadai, Die Elastischen Platten,, Springer-Verlag, (1968).  doi: 10.1007/978-3-642-99170-7.  Google Scholar

[30]

C. L. Navier, Extraits des recherches sur la flexion des plans élastiques,, Bulletin des Sciences de la Société Philomathique de Paris, (1823), 92.   Google Scholar

[31]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges,, J. Sound and Vibration, 307 (2007), 894.  doi: 10.1016/j.jsv.2007.07.036.  Google Scholar

[32]

R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability,, ASCE Press, (2001).  doi: 10.1061/9780784405420.  Google Scholar

[33]

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications,, Marcel Dekker Inc., (2001).  doi: 10.1201/9780203908723.  Google Scholar

[34]

Tacoma Narrows Bridge Collapse, http://www.youtube.com/watch?v=3mclp9QmCGs,, 1940., ().   Google Scholar

[35]

O. Zanaboni, Risoluzione, in serie semplice, della lastra rettangolare appoggiata, sottoposta all'azione di un carico concentrato comunque disposto,, Annali Mat. Pura Appl., 19 (1940), 107.  doi: 10.1007/BF02410542.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I,, Comm. Pure Appl. Math., 12 (1959), 623.  doi: 10.1002/cpa.3160120405.  Google Scholar

[3]

B. Akesson, Understanding Bridges Collapses,, CRC Press, (2008).   Google Scholar

[4]

O. H. Ammann, T. von Kármán and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge,, Federal Works Agency, (1941).   Google Scholar

[5]

G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge collapse,, Appl. Math. Modelling, 39 (2015), 901.  doi: 10.1016/j.apm.2014.06.022.  Google Scholar

[6]

E. Berchio, A. Ferrero, F. Gazzola and P. Karageorgis, Qualitative behavior of global solutions to some nonlinear fourth order differential equations,, J. Diff. Eq., 251 (2011), 2696.  doi: 10.1016/j.jde.2011.05.036.  Google Scholar

[7]

J. M. W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges,, Earthquake Engineering & Structural Dynamics, 23 (1994), 1351.  doi: 10.1002/eqe.4290231206.  Google Scholar

[8]

K. Friedrichs, Die randwert und eigenwertprobleme aus der theorie der elastischen platten (anwendung der direkten methoden der variationsrechnung),, Math. Ann., 98 (1928), 205.  doi: 10.1007/BF01451590.  Google Scholar

[9]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009).  doi: 10.1103/PhysRevE.79.051110.  Google Scholar

[10]

F. Gazzola, Nonlinearity in oscillating bridges,, Electron. J. Diff. Equ., (2013), 1.   Google Scholar

[11]

F. Gazzola, H.-Ch. Grunau and G. Sweers, Polyharmonic Boundary Value Problems,, Lecture Notes in Mathematics, (1991).  doi: 10.1007/978-3-642-12245-3.  Google Scholar

[12]

F. Gazzola and R. Pavani, Blow up oscillating solutions to some nonlinear fourth order differential equations,, Nonlinear Analysis, 74 (2011), 6696.  doi: 10.1016/j.na.2011.06.049.  Google Scholar

[13]

F. Gazzola and R. Pavani, Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations,, Arch. Rat. Mech. Anal., 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[14]

D. Imhof, Risk Assessment of Existing Bridge Structure,, PhD Dissertation, (2004).   Google Scholar

[15]

T. Kawada, History of the modern suspension bridge: Solving the dilemma between economy and stiffness,, ASCE Press, (2010).  doi: 10.1061/9780784410189.  Google Scholar

[16]

G. R. Kirchhoff, Über das gleichgewicht und die bewegung einer elastischen scheibe,, J. Reine Angew. Math., 1850 (2009), 51.  doi: 10.1515/crll.1850.40.51.  Google Scholar

[17]

W. Lacarbonara, Nonlinear Structural Mechanics,, Springer, (2013).  doi: 10.1007/978-1-4419-1276-3.  Google Scholar

[18]

R. S. Lakes, Foam structures with a negative Poisson's ratio,, Science, 235 (1987), 1038.  doi: 10.1126/science.235.4792.1038.  Google Scholar

[19]

A. C. Lazer and P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems,, Ann. Inst. H. Poincaré Anal. non Lin., 4 (1987), 243.   Google Scholar

[20]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[21]

M. Lévy, Sur l'équilibre élastique d'une plaque rectangulaire,, Comptes Rendus Acad. Sci. Paris, 129 (1899), 535.   Google Scholar

[22]

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity,, Fourth edition, (1927).   Google Scholar

[23]

E. H. Mansfield, The Bending and Stretching of Plates,, Second edition, (1989).  doi: 10.1017/CBO9780511525193.  Google Scholar

[24]

V. Maz'ya and J. Rossmann, Elliptic Equations in Polyhedral Domains,, Mathematical Surveys and Monographs, (2010).  doi: 10.1090/surv/162.  Google Scholar

[25]

P. J. McKenna, Torsional oscillations in suspension bridges revisited: Fixing an old approximation,, Amer. Math. Monthly, 106 (1999), 1.  doi: 10.2307/2589581.  Google Scholar

[26]

P. J. McKenna and C. Ó. Tuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response,, Amer. Math. Monthly, 108 (2001), 738.  doi: 10.2307/2695617.  Google Scholar

[27]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rat. Mech. Anal., 98 (1987), 167.  doi: 10.1007/BF00251232.  Google Scholar

[28]

P. J. McKenna and W. Walter, Travelling waves in a suspension bridge,, SIAM J. Appl. Math., 50 (1990), 703.  doi: 10.1137/0150041.  Google Scholar

[29]

A. Nadai, Die Elastischen Platten,, Springer-Verlag, (1968).  doi: 10.1007/978-3-642-99170-7.  Google Scholar

[30]

C. L. Navier, Extraits des recherches sur la flexion des plans élastiques,, Bulletin des Sciences de la Société Philomathique de Paris, (1823), 92.   Google Scholar

[31]

R. H. Plaut and F. M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges,, J. Sound and Vibration, 307 (2007), 894.  doi: 10.1016/j.jsv.2007.07.036.  Google Scholar

[32]

R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability,, ASCE Press, (2001).  doi: 10.1061/9780784405420.  Google Scholar

[33]

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications,, Marcel Dekker Inc., (2001).  doi: 10.1201/9780203908723.  Google Scholar

[34]

Tacoma Narrows Bridge Collapse, http://www.youtube.com/watch?v=3mclp9QmCGs,, 1940., ().   Google Scholar

[35]

O. Zanaboni, Risoluzione, in serie semplice, della lastra rettangolare appoggiata, sottoposta all'azione di un carico concentrato comunque disposto,, Annali Mat. Pura Appl., 19 (1940), 107.  doi: 10.1007/BF02410542.  Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[2]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[3]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[5]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[6]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[7]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[8]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[9]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[10]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[11]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[12]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[13]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[14]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[16]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[17]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[18]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[19]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[20]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (34)

Other articles
by authors

[Back to Top]