January  2015, 35(1): 59-72. doi: 10.3934/dcds.2015.35.59

Periodic orbits and invariant cones in three-dimensional piecewise linear systems

1. 

Escuela Técnica Superior de Ingeniería, Departamento de Matemática Aplicada II, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain, Spain

2. 

MYCENAE Project-Team, Paris-Rocquencourt Centre, Inria, Domaine de Voluceau BP 105, 78153 Le Chesnay Cedex, France

Received  July 2013 Revised  May 2014 Published  August 2014

We deal with the existence of invariant cones in a family of three-dimensional non-observable piecewise linear systems with two zones of linearity. We find a subfamily of systems with one invariant cone foliated by periodic orbits. After that, we perturb the system by making it observable and non-homogeneous. Then, the periodic orbits that remain after the perturbation are analyzed.
Citation: Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59
References:
[1]

S. Barnet and R. G. Cameron, Introduction to Mathematical Control Theory, Oxford University Press, New York, 1985.

[2]

T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers and separatrix cycles of Planar analityc systems, SIAM Rev., 36 (1994), 341-376. doi: 10.1137/1036094.

[3]

V. Carmona, S. Fernández-García and E. Freire, Saddle-node bifurcation of invariant cones in 3D piecewise linear systems, Phys. D, 241 (2012), 623-635. doi: 10.1016/j.physd.2011.11.020.

[4]

V. Carmona, E. Freire, E. Ponce and F. Torres, On simplifying and classifying piecewise-linear systems, IEEE Trans. Circuits Systems I Fund. Theory Appl., 49 (2002), 609-620. doi: 10.1109/TCSI.2002.1001950.

[5]

V. Carmona, E. Freire, E. Ponce, J. Ros and F. Torres, Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua's circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3153-3164. doi: 10.1142/S0218127405014027.

[6]

V. Carmona, E. Freire, E. Ponce and F. Torres, Bifurcation of invariant cones in piecewise linear homogeneous systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 2469-2484. doi: 10.1142/S0218127405013423.

[7]

V. Carmona, E. Freire, E. Ponce and F. Torres, The continuous matching of two stable linear systems can be unstable, Discrete and Contin. Dyn. Syst., 16 (2006), 689-703. doi: 10.3934/dcds.2006.16.689.

[8]

A. Cima, J. Llibre and M. A. Teixeira, Limit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory, Appl. Anal., 87 (2008), 149-164. doi: 10.1080/00036810701556136.

[9]

Earl A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

[10]

S. Coombes, R. Thul and K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057. doi: 10.1016/j.physd.2011.05.012.

[11]

Z. Du, Y. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Analysis, 69 (2008), 3610-3628. doi: 10.1016/j.na.2007.09.045.

[12]

E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 2073-2097. doi: 10.1142/S0218127498001728.

[13]

E. Freire, E. Ponce and J. Ros, Limit cycle bifurcation from center in symmetric piecewise-linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 895-907. doi: 10.1142/S0218127499000638.

[14]

E. Freire, E. Ponce and F. Torres, Hopf-like bifurcations in planar piecewise linear systems, Publ. Mat., 41 (1997), 135-148. doi: 10.5565/PUBLMAT_41197_08.

[15]

C. Kahlert and O. E. Rössler, Anaytical properties of Poincaré halfmaps in a class of piecewise-linear dynamical systems, Z. Naturforsch. A, 40 (1985), 1011-1025.

[16]

M. Kunze, Lecture Notes in Mathematics, Springer, 2000. doi: 10.1007/BFb0103843.

[17]

T. Küpper, Invariant cones for non-smooth dynamical systems, Math. Comput. Simulation., 79 (2008), 1396-1408. doi: 10.1016/j.matcom.2008.03.010.

[18]

T. Küpper, D. Weiss and H. A. Hoshman, Invariant manifolds for nonsmooth systems, Phys. D, 241 (2012), 1895-1902. doi: 10.1016/j.physd.2011.07.012.

[19]

J. Llibre and A. E. Teruel, Existence of Poincaré maps in piecewise linear differential systems in $\mathbb R^N$, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2843-2851. doi: 10.1142/S0218127404010874.

[20]

W. S. Loud, Periodic solutions of a perturbed autonomous system, Ann. of Math., 70 (1959), 490-529. doi: 10.2307/1970327.

[21]

G. M. Maggio, M. di Bernardo and M. P. Kennedy, Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1160-1177. doi: 10.1109/81.873871.

[22]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlín, 1996. doi: 10.1007/978-3-642-61453-8.

show all references

References:
[1]

S. Barnet and R. G. Cameron, Introduction to Mathematical Control Theory, Oxford University Press, New York, 1985.

[2]

T. R. Blows and L. M. Perko, Bifurcation of limit cycles from centers and separatrix cycles of Planar analityc systems, SIAM Rev., 36 (1994), 341-376. doi: 10.1137/1036094.

[3]

V. Carmona, S. Fernández-García and E. Freire, Saddle-node bifurcation of invariant cones in 3D piecewise linear systems, Phys. D, 241 (2012), 623-635. doi: 10.1016/j.physd.2011.11.020.

[4]

V. Carmona, E. Freire, E. Ponce and F. Torres, On simplifying and classifying piecewise-linear systems, IEEE Trans. Circuits Systems I Fund. Theory Appl., 49 (2002), 609-620. doi: 10.1109/TCSI.2002.1001950.

[5]

V. Carmona, E. Freire, E. Ponce, J. Ros and F. Torres, Limit cycle bifurcation in 3D continuous piecewise linear systems with two zones. Application to Chua's circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3153-3164. doi: 10.1142/S0218127405014027.

[6]

V. Carmona, E. Freire, E. Ponce and F. Torres, Bifurcation of invariant cones in piecewise linear homogeneous systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 2469-2484. doi: 10.1142/S0218127405013423.

[7]

V. Carmona, E. Freire, E. Ponce and F. Torres, The continuous matching of two stable linear systems can be unstable, Discrete and Contin. Dyn. Syst., 16 (2006), 689-703. doi: 10.3934/dcds.2006.16.689.

[8]

A. Cima, J. Llibre and M. A. Teixeira, Limit cycles of some polynomial differential systems in dimension 2, 3 and 4, via averaging theory, Appl. Anal., 87 (2008), 149-164. doi: 10.1080/00036810701556136.

[9]

Earl A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955.

[10]

S. Coombes, R. Thul and K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models, Phys. D, 241 (2012), 2042-2057. doi: 10.1016/j.physd.2011.05.012.

[11]

Z. Du, Y. Li and W. Zhang, Bifurcation of periodic orbits in a class of planar Filippov systems, Nonlinear Analysis, 69 (2008), 3610-3628. doi: 10.1016/j.na.2007.09.045.

[12]

E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 2073-2097. doi: 10.1142/S0218127498001728.

[13]

E. Freire, E. Ponce and J. Ros, Limit cycle bifurcation from center in symmetric piecewise-linear systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9 (1999), 895-907. doi: 10.1142/S0218127499000638.

[14]

E. Freire, E. Ponce and F. Torres, Hopf-like bifurcations in planar piecewise linear systems, Publ. Mat., 41 (1997), 135-148. doi: 10.5565/PUBLMAT_41197_08.

[15]

C. Kahlert and O. E. Rössler, Anaytical properties of Poincaré halfmaps in a class of piecewise-linear dynamical systems, Z. Naturforsch. A, 40 (1985), 1011-1025.

[16]

M. Kunze, Lecture Notes in Mathematics, Springer, 2000. doi: 10.1007/BFb0103843.

[17]

T. Küpper, Invariant cones for non-smooth dynamical systems, Math. Comput. Simulation., 79 (2008), 1396-1408. doi: 10.1016/j.matcom.2008.03.010.

[18]

T. Küpper, D. Weiss and H. A. Hoshman, Invariant manifolds for nonsmooth systems, Phys. D, 241 (2012), 1895-1902. doi: 10.1016/j.physd.2011.07.012.

[19]

J. Llibre and A. E. Teruel, Existence of Poincaré maps in piecewise linear differential systems in $\mathbb R^N$, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2843-2851. doi: 10.1142/S0218127404010874.

[20]

W. S. Loud, Periodic solutions of a perturbed autonomous system, Ann. of Math., 70 (1959), 490-529. doi: 10.2307/1970327.

[21]

G. M. Maggio, M. di Bernardo and M. P. Kennedy, Nonsmooth bifurcations in a piecewise-linear model of the Colpitts oscillator, IEEE Trans. Circuits Systems I Fund. Theory Appl., 47 (2000), 1160-1177. doi: 10.1109/81.873871.

[22]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer, Berlín, 1996. doi: 10.1007/978-3-642-61453-8.

[1]

Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 563-586. doi: 10.3934/dcdsb.2018197

[2]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[3]

Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967

[4]

Miguel Ângelo De Sousa Mendes. Quasi-invariant attractors of piecewise isometric systems. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 323-338. doi: 10.3934/dcds.2003.9.323

[5]

Tifei Qian, Zhihong Xia. Heteroclinic orbits and chaotic invariant sets for monotone twist maps. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 69-95. doi: 10.3934/dcds.2003.9.69

[6]

I. Baldomá, Àlex Haro. One dimensional invariant manifolds of Gevrey type in real-analytic maps. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 295-322. doi: 10.3934/dcdsb.2008.10.295

[7]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[8]

Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259

[9]

Harry Dankowicz, Jan Sieber. Sensitivity analysis for periodic orbits and quasiperiodic invariant tori using the adjoint method. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022006

[10]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[11]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[12]

Nguyen Thieu Huy, Pham Van Bang. Invariant stable manifolds for partial neutral functional differential equations in admissible spaces on a half-line. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2993-3011. doi: 10.3934/dcdsb.2015.20.2993

[13]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3837-3849. doi: 10.3934/dcdss.2020444

[15]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[16]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1055-1073. doi: 10.3934/dcdsb.2021080

[17]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[18]

George Osipenko. Indestructibility of invariant locally non-unique manifolds. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 203-219. doi: 10.3934/dcds.1996.2.203

[19]

Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133

[20]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 579-596. doi: 10.3934/dcds.2006.15.579

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (7)

[Back to Top]