\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Harnack type inequalities for some doubly nonlinear singular parabolic equations

Abstract Related Papers Cited by
  • We prove Harnack type inequalities for a wide class of parabolic doubly nonlinear equations including $u_t=$ ${ div}(|u|^{m-1}|Du|^{p-2}Du)$. We will distinguish between the supercritical range $3 - \frac {p} {N} < p+m < 3$ and the subcritical $2 < p+m \le 3 - \frac {p} {N}$ range. Our results extend similar estimates holding for general equations having the same structure as the parabolic $p$-Laplace or the porous medium equation and recently collected in [6].
    Mathematics Subject Classification: Primary: 35B65, 35K67; Secondary: 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Bamberger, Étude d'une équation doublement non linéaire, J. Functional Analysis, 24 (1977), 148-155.doi: 10.1016/0022-1236(77)90051-9.

    [2]

    D. Blanchard and G. A. Francfort, Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19 (1988), 1032-1056.doi: 10.1137/0519070.

    [3]

    C. Caisheng, Global existence and $L^\infty$ estimates of solution for doubly nonlinear parabolic equation, J. Math. Anal. Appl., 244 (2000), 133-146.doi: 10.1006/jmaa.1999.6695.

    [4]

    N. Calvo, J. I. Díaz, J. Durany, E. Schiavi and C. Vázquez, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63 (2002), 683-707 (electronic).doi: 10.1137/S0036139901385345.

    [5]

    J. I. Díaz and J. F. Padial, Uniqueness and existence of solutions in the $ BV_t(Q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.doi: 10.5565/PUBLMAT_40296_18.

    [6]

    E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics, Springer Verlag, New York, 2012.doi: 10.1007/978-1-4614-1584-8.

    [7]

    S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations, Adv. Differential Equations, 13 (2008), 139-168.

    [8]

    S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations, Contemp. Math., 594 (2013), 179-199.doi: 10.1090/conm/594/11785.

    [9]

    S. Fornaro, M. Sosio and V. Vespri, $L_{loc}^r - L_{loc}^\infty$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 737-760.doi: 10.3934/dcdss.2014.7.737.

    [10]

    A. S. Kalashnikov, Propagation of perturbations in the first boundary value problem for a degenerate parabolic equation with a double nonlinearity, Trudy Sem. Petrovsk., (1982), {128-134}.

    [11]

    A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys, 42 (1987), 135-176, 287.

    [12]

    M. Küntz and P. Lavallée, Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials, J. Phys. D: Appl. Phys., 34 (2001), 2547-2554.doi: 10.1088/0022-3727/34/16/322.

    [13]

    T. Kuusi, J. Siljander and J. M. Urbano, Local Hölder continuity for doubly nonlinear parabolic equations, Indiana Univ. Math. J., 61 (2012), 399-430.doi: 10.1512/iumj.2012.61.4513.

    [14]

    K. Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation, SIAM J. Math. Anal., 27 (1996), 1235-1260.doi: 10.1137/S0036141094270370.

    [15]

    A. V. Ivanov, Regularity for doubly nonlinear parabolic equations, J. Math. Sci., 83 (1997), 22-37.doi: 10.1007/BF02398459.

    [16]

    A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations, J. Math. Sci., 84 (1997), 845-855.doi: 10.1007/BF02399936.

    [17]

    J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires, Dunod, Paris, 1969.

    [18]

    M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Equations, 103 (1993), 146-178.doi: 10.1006/jdeq.1993.1045.

    [19]

    M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988), {187-212}.doi: 10.1016/0022-247X(88)90053-4.

    [20]

    V. Vespri, On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations, Manuscripta Math., 75 (1992), {65-80}.doi: 10.1007/BF02567072.

    [21]

    V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations, J. Math. Anal. Appl., 181 (1994), 104-131.doi: 10.1006/jmaa.1994.1008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return