Citation: |
[1] |
A. Bamberger, Étude d'une équation doublement non linéaire, J. Functional Analysis, 24 (1977), 148-155.doi: 10.1016/0022-1236(77)90051-9. |
[2] |
D. Blanchard and G. A. Francfort, Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19 (1988), 1032-1056.doi: 10.1137/0519070. |
[3] |
C. Caisheng, Global existence and $L^\infty$ estimates of solution for doubly nonlinear parabolic equation, J. Math. Anal. Appl., 244 (2000), 133-146.doi: 10.1006/jmaa.1999.6695. |
[4] |
N. Calvo, J. I. Díaz, J. Durany, E. Schiavi and C. Vázquez, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics, SIAM J. Appl. Math., 63 (2002), 683-707 (electronic).doi: 10.1137/S0036139901385345. |
[5] |
J. I. Díaz and J. F. Padial, Uniqueness and existence of solutions in the $ BV_t(Q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.doi: 10.5565/PUBLMAT_40296_18. |
[6] |
E. DiBenedetto, U. Gianazza and V. Vespri, Harnack's Inequality for Degenerate and Singular Parabolic Equations, Springer Monographs in Mathematics, Springer Verlag, New York, 2012.doi: 10.1007/978-1-4614-1584-8. |
[7] |
S. Fornaro and M. Sosio, Intrinsic Harnack estimates for some doubly nonlinear degenerate parabolic equations, Adv. Differential Equations, 13 (2008), 139-168. |
[8] |
S. Fornaro, M. Sosio and V. Vespri, Energy estimates and integral Harnack inequality for some doubly nonlinear singular parabolic equations, Contemp. Math., 594 (2013), 179-199.doi: 10.1090/conm/594/11785. |
[9] |
S. Fornaro, M. Sosio and V. Vespri, $L_{loc}^r - L_{loc}^\infty$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 737-760.doi: 10.3934/dcdss.2014.7.737. |
[10] |
A. S. Kalashnikov, Propagation of perturbations in the first boundary value problem for a degenerate parabolic equation with a double nonlinearity, Trudy Sem. Petrovsk., (1982), {128-134}. |
[11] |
A. S. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Russian Math. Surveys, 42 (1987), 135-176, 287. |
[12] |
M. Küntz and P. Lavallée, Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials, J. Phys. D: Appl. Phys., 34 (2001), 2547-2554.doi: 10.1088/0022-3727/34/16/322. |
[13] |
T. Kuusi, J. Siljander and J. M. Urbano, Local Hölder continuity for doubly nonlinear parabolic equations, Indiana Univ. Math. J., 61 (2012), 399-430.doi: 10.1512/iumj.2012.61.4513. |
[14] |
K. Ishige, On the existence of solutions of the Cauchy problem for a doubly nonlinear parabolic equation, SIAM J. Math. Anal., 27 (1996), 1235-1260.doi: 10.1137/S0036141094270370. |
[15] |
A. V. Ivanov, Regularity for doubly nonlinear parabolic equations, J. Math. Sci., 83 (1997), 22-37.doi: 10.1007/BF02398459. |
[16] |
A. V. Ivanov, P. Z. Mkrtychan and W. Jäger, Existence and uniqueness of a regular solution of the Cauchy-Diriclhet problem for a class of doubly nonlinear parabolic equations, J. Math. Sci., 84 (1997), 845-855.doi: 10.1007/BF02399936. |
[17] |
J. L. Lions, Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[18] |
M. M. Porzio and V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Diff. Equations, 103 (1993), 146-178.doi: 10.1006/jdeq.1993.1045. |
[19] |
M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988), {187-212}.doi: 10.1016/0022-247X(88)90053-4. |
[20] |
V. Vespri, On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations, Manuscripta Math., 75 (1992), {65-80}.doi: 10.1007/BF02567072. |
[21] |
V. Vespri, Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations, J. Math. Anal. Appl., 181 (1994), 104-131.doi: 10.1006/jmaa.1994.1008. |