December  2015, 35(12): 5927-5962. doi: 10.3934/dcds.2015.35.5927

On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density

1. 

Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

2. 

Dipartimento di Matematica , Università di Milano, via Cesare Saldini 50, 20133 Milano, Italy

Received  March 2014 Published  May 2015

We are concerned with the long time behaviour of solutions to the fractional porous medium equation with a variable spatial density. We prove that if the density decays slowly at infinity, then the solution approaches the Barenblatt-type solution of a proper singular fractional problem. If, on the contrary, the density decays rapidly at infinity, we show that the minimal solution multiplied by a suitable power of the time variable converges to the minimal solution of a certain fractional sublinear elliptic equation.
Citation: Gabriele Grillo, Matteo Muratori, Fabio Punzo. On the asymptotic behaviour of solutions to the fractional porous medium equation with variable density. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5927-5962. doi: 10.3934/dcds.2015.35.5927
References:
[1]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems,, Adv. Math., 224 (2010), 293.  doi: 10.1016/j.aim.2009.11.010.  Google Scholar

[2]

P. Bénilan and M. G. Crandall, The continuous dependence on $\phi$ of solutions of $u_t-\Delta\phi(u)=0 $,, Indiana Univ. Math. J., 30 (1981), 161.  doi: 10.1512/iumj.1981.30.30014.  Google Scholar

[3]

P. Bénilan and R. Gariepy, Strong solutions in $L^1$ of degenerate parabolic equations,, J. Differential Equations, 119 (1995), 473.  doi: 10.1006/jdeq.1995.1099.  Google Scholar

[4]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates,, Arch. Rat. Mech. Anal., 191 (2009), 347.  doi: 10.1007/s00205-008-0155-z.  Google Scholar

[5]

M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains,, preprint, (2014).   Google Scholar

[6]

M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains,, preprint, (2013).  doi: 10.1007/s00205-015-0861-2.  Google Scholar

[7]

M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations,, Adv. Math., 250 (2014), 242.  doi: 10.1016/j.aim.2013.09.018.  Google Scholar

[8]

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39.  doi: 10.1017/S0308210511000175.  Google Scholar

[9]

H. Brezis and S. Kamin, Sublinear Elliptic Equations in $\mathbbR^n$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[10]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[11]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[12]

W. Choi, S. Kim and K.-A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian,, J. Funct. Anal., 266 (2014), 6531.  doi: 10.1016/j.jfa.2014.02.029.  Google Scholar

[13]

A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A fractional porous medium equation,, Adv. Math., 226 (2011), 1378.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[14]

A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A general fractional porous medium equation,, Comm. Pure Appl. Math., 65 (2012), 1242.  doi: 10.1002/cpa.21408.  Google Scholar

[15]

E. Di Benedetto, Continuity of Weak Solutions to a General Porous Medium Equation,, Indiana Univ. Math. J., 32 (1983), 83.  doi: 10.1512/iumj.1983.32.32008.  Google Scholar

[16]

G. Di Blasio and B. Volzone, Comparison and regularity results for the fractional Laplacian via symmetrization methods,, J. Differential Equations, 253 (2012), 2593.  doi: 10.1016/j.jde.2012.07.004.  Google Scholar

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium,, J. Differential Equations, 84 (1990), 309.  doi: 10.1016/0022-0396(90)90081-Y.  Google Scholar

[19]

D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity,, Proc. Amer. Math. Soc., 120 (1994), 825.  doi: 10.1090/S0002-9939-1994-1169025-2.  Google Scholar

[20]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an $n$-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.  doi: 10.2307/1999846.  Google Scholar

[21]

G. Grillo, M. Muratori and M. M. Porzio, Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities,, Discrete Contin. Dyn. Syst., 33 (2013), 3599.  doi: 10.3934/dcds.2013.33.3599.  Google Scholar

[22]

G. Grillo, M. Muratori and F. Punzo, Conditions at infinity for the inhomogeneous filtration equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 413.  doi: 10.1016/j.anihpc.2013.04.002.  Google Scholar

[23]

G. Grillo, M. Muratori and F. Punzo, Weighted fractional porous media equations: Existence and uniqueness of weak solutions with measure data,, preprint, (2013).   Google Scholar

[24]

R. G. Iagar and A. Sánchez, Asymptotic behavior for the heat equation in nonhomogeneous media with critical density,, Nonlinear Anal., 89 (2013), 24.  doi: 10.1016/j.na.2013.05.002.  Google Scholar

[25]

R. G. Iagar, A. Sánchez, Large time behavior for a porous medium equation in a nonhomogeneous medium with critical density,, Nonlinear Anal., 102 (2014), 226.  doi: 10.1016/j.na.2014.02.016.  Google Scholar

[26]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 9 (1998), 279.   Google Scholar

[27]

S. Kamin, G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density,, Discrete Contin. Dyn. Syst., 26 (2010), 521.  doi: 10.3934/dcds.2010.26.521.  Google Scholar

[28]

S. Kamin and P. Rosenau, Nonlinear diffusion in a finite mass medium,, Comm. Pure Appl. Math., 35 (1982), 113.  doi: 10.1002/cpa.3160350106.  Google Scholar

[29]

S. Nieto and G. Reyes, Asymptotic behavior of the solutions of the inhomogeneous porous medium equation with critical vanishing density,, Commun. Pure Appl. Anal., 12 (2013), 1123.  doi: 10.3934/cpaa.2013.12.1123.  Google Scholar

[30]

M. Pierre, Uniqueness of the solutions of $u_t - \Delta \varphi (u)=0$ with initial datum a measure,, Nonlinear Anal., 6 (1982), 175.  doi: 10.1016/0362-546X(82)90086-4.  Google Scholar

[31]

F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density,, J. Evol. Equ., 9 (2009), 429.  doi: 10.1007/s00028-009-0018-6.  Google Scholar

[32]

F. Punzo and G. Terrone, On the Cauchy problem for a general fractional porous medium equation with variable density,, Nonlinear Anal., 98 (2014), 27.  doi: 10.1016/j.na.2013.12.007.  Google Scholar

[33]

F. Punzo and G. Terrone, Well-posedness for the Cauchy problem for a fractional porous medium equation with variable density in one space dimension,, Differential Integral Equations, 27 (2014), 461.   Google Scholar

[34]

F. Punzo and G. Terrone, On a fractional sublinear elliptic equation with a variable coefficient,, Appl. Anal., 94 (2015), 800.  doi: 10.1080/00036811.2014.902053.  Google Scholar

[35]

F. Punzo and E. Valdinoci, Uniqueness in weighted Lebesgue spaces for a class of fractional elliptic and parabolic equations,, J. Differential Equations, 258 (2015), 555.  doi: 10.1016/j.jde.2014.09.023.  Google Scholar

[36]

V. D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,, Contemporary Mathematics and Its Applications, (2008).  doi: 10.1155/9789774540394.  Google Scholar

[37]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493.  doi: 10.3934/cpaa.2009.8.493.  Google Scholar

[38]

G. Reyes and J. L. Vázquez, The Cauchy problem for the inhomogeneous porous medium equation,, Netw. Heterog. Media, 1 (2006), 337.  doi: 10.3934/nhm.2006.1.337.  Google Scholar

[39]

G. Reyes and J. L. Vázquez, The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions,, Commun. Pure Appl. Anal., 7 (2008), 1275.  doi: 10.3934/cpaa.2008.7.1275.  Google Scholar

[40]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space,, J. Evol. Equ., 3 (2003), 67.  doi: 10.1007/s000280300004.  Google Scholar

[41]

J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type,, J. Eur. Math. Soc., 16 (2014), 769.  doi: 10.4171/JEMS/446.  Google Scholar

[42]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs, (2007).   Google Scholar

show all references

References:
[1]

I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problems,, Adv. Math., 224 (2010), 293.  doi: 10.1016/j.aim.2009.11.010.  Google Scholar

[2]

P. Bénilan and M. G. Crandall, The continuous dependence on $\phi$ of solutions of $u_t-\Delta\phi(u)=0 $,, Indiana Univ. Math. J., 30 (1981), 161.  doi: 10.1512/iumj.1981.30.30014.  Google Scholar

[3]

P. Bénilan and R. Gariepy, Strong solutions in $L^1$ of degenerate parabolic equations,, J. Differential Equations, 119 (1995), 473.  doi: 10.1006/jdeq.1995.1099.  Google Scholar

[4]

A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates,, Arch. Rat. Mech. Anal., 191 (2009), 347.  doi: 10.1007/s00205-008-0155-z.  Google Scholar

[5]

M. Bonforte, Y. Sire and J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains,, preprint, (2014).   Google Scholar

[6]

M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains,, preprint, (2013).  doi: 10.1007/s00205-015-0861-2.  Google Scholar

[7]

M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations,, Adv. Math., 250 (2014), 242.  doi: 10.1016/j.aim.2013.09.018.  Google Scholar

[8]

C. Brändle, E. Colorado, A. de Pablo and U. Sánchez, A concave-convex elliptic problem involving the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 39.  doi: 10.1017/S0308210511000175.  Google Scholar

[9]

H. Brezis and S. Kamin, Sublinear Elliptic Equations in $\mathbbR^n$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[10]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles and Hamiltonian estimates,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[11]

L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Differential Equations, 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[12]

W. Choi, S. Kim and K.-A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian,, J. Funct. Anal., 266 (2014), 6531.  doi: 10.1016/j.jfa.2014.02.029.  Google Scholar

[13]

A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A fractional porous medium equation,, Adv. Math., 226 (2011), 1378.  doi: 10.1016/j.aim.2010.07.017.  Google Scholar

[14]

A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A general fractional porous medium equation,, Comm. Pure Appl. Math., 65 (2012), 1242.  doi: 10.1002/cpa.21408.  Google Scholar

[15]

E. Di Benedetto, Continuity of Weak Solutions to a General Porous Medium Equation,, Indiana Univ. Math. J., 32 (1983), 83.  doi: 10.1512/iumj.1983.32.32008.  Google Scholar

[16]

G. Di Blasio and B. Volzone, Comparison and regularity results for the fractional Laplacian via symmetrization methods,, J. Differential Equations, 253 (2012), 2593.  doi: 10.1016/j.jde.2012.07.004.  Google Scholar

[17]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bull. Sci. Math., 136 (2012), 521.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

D. Eidus, The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium,, J. Differential Equations, 84 (1990), 309.  doi: 10.1016/0022-0396(90)90081-Y.  Google Scholar

[19]

D. Eidus and S. Kamin, The filtration equation in a class of functions decreasing at infinity,, Proc. Amer. Math. Soc., 120 (1994), 825.  doi: 10.1090/S0002-9939-1994-1169025-2.  Google Scholar

[20]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an $n$-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.  doi: 10.2307/1999846.  Google Scholar

[21]

G. Grillo, M. Muratori and M. M. Porzio, Porous media equations with two weights: Smoothing and decay properties of energy solutions via Poincaré inequalities,, Discrete Contin. Dyn. Syst., 33 (2013), 3599.  doi: 10.3934/dcds.2013.33.3599.  Google Scholar

[22]

G. Grillo, M. Muratori and F. Punzo, Conditions at infinity for the inhomogeneous filtration equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 413.  doi: 10.1016/j.anihpc.2013.04.002.  Google Scholar

[23]

G. Grillo, M. Muratori and F. Punzo, Weighted fractional porous media equations: Existence and uniqueness of weak solutions with measure data,, preprint, (2013).   Google Scholar

[24]

R. G. Iagar and A. Sánchez, Asymptotic behavior for the heat equation in nonhomogeneous media with critical density,, Nonlinear Anal., 89 (2013), 24.  doi: 10.1016/j.na.2013.05.002.  Google Scholar

[25]

R. G. Iagar, A. Sánchez, Large time behavior for a porous medium equation in a nonhomogeneous medium with critical density,, Nonlinear Anal., 102 (2014), 226.  doi: 10.1016/j.na.2014.02.016.  Google Scholar

[26]

S. Kamin, R. Kersner and A. Tesei, On the Cauchy problem for a class of parabolic equations with variable density,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., 9 (1998), 279.   Google Scholar

[27]

S. Kamin, G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with rapidly decaying density,, Discrete Contin. Dyn. Syst., 26 (2010), 521.  doi: 10.3934/dcds.2010.26.521.  Google Scholar

[28]

S. Kamin and P. Rosenau, Nonlinear diffusion in a finite mass medium,, Comm. Pure Appl. Math., 35 (1982), 113.  doi: 10.1002/cpa.3160350106.  Google Scholar

[29]

S. Nieto and G. Reyes, Asymptotic behavior of the solutions of the inhomogeneous porous medium equation with critical vanishing density,, Commun. Pure Appl. Anal., 12 (2013), 1123.  doi: 10.3934/cpaa.2013.12.1123.  Google Scholar

[30]

M. Pierre, Uniqueness of the solutions of $u_t - \Delta \varphi (u)=0$ with initial datum a measure,, Nonlinear Anal., 6 (1982), 175.  doi: 10.1016/0362-546X(82)90086-4.  Google Scholar

[31]

F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density,, J. Evol. Equ., 9 (2009), 429.  doi: 10.1007/s00028-009-0018-6.  Google Scholar

[32]

F. Punzo and G. Terrone, On the Cauchy problem for a general fractional porous medium equation with variable density,, Nonlinear Anal., 98 (2014), 27.  doi: 10.1016/j.na.2013.12.007.  Google Scholar

[33]

F. Punzo and G. Terrone, Well-posedness for the Cauchy problem for a fractional porous medium equation with variable density in one space dimension,, Differential Integral Equations, 27 (2014), 461.   Google Scholar

[34]

F. Punzo and G. Terrone, On a fractional sublinear elliptic equation with a variable coefficient,, Appl. Anal., 94 (2015), 800.  doi: 10.1080/00036811.2014.902053.  Google Scholar

[35]

F. Punzo and E. Valdinoci, Uniqueness in weighted Lebesgue spaces for a class of fractional elliptic and parabolic equations,, J. Differential Equations, 258 (2015), 555.  doi: 10.1016/j.jde.2014.09.023.  Google Scholar

[36]

V. D. Rădulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods,, Contemporary Mathematics and Its Applications, (2008).  doi: 10.1155/9789774540394.  Google Scholar

[37]

G. Reyes and J. L. Vázquez, Long time behavior for the inhomogeneous PME in a medium with slowly decaying density,, Commun. Pure Appl. Anal., 8 (2009), 493.  doi: 10.3934/cpaa.2009.8.493.  Google Scholar

[38]

G. Reyes and J. L. Vázquez, The Cauchy problem for the inhomogeneous porous medium equation,, Netw. Heterog. Media, 1 (2006), 337.  doi: 10.3934/nhm.2006.1.337.  Google Scholar

[39]

G. Reyes and J. L. Vázquez, The inhomogeneous PME in several space dimensions. Existence and uniqueness of finite energy solutions,, Commun. Pure Appl. Anal., 7 (2008), 1275.  doi: 10.3934/cpaa.2008.7.1275.  Google Scholar

[40]

J. L. Vázquez, Asymptotic behaviour for the porous medium equation posed in the whole space,, J. Evol. Equ., 3 (2003), 67.  doi: 10.1007/s000280300004.  Google Scholar

[41]

J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type,, J. Eur. Math. Soc., 16 (2014), 769.  doi: 10.4171/JEMS/446.  Google Scholar

[42]

J. L. Vázquez, The Porous Medium Equation. Mathematical Theory,, Oxford Mathematical Monographs, (2007).   Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[5]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[6]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[7]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[8]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[9]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[10]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[11]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[12]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[15]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[16]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[17]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[20]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]