December  2015, 35(12): 5977-5998. doi: 10.3934/dcds.2015.35.5977

Schauder estimates for solutions of linear parabolic integro-differential equations

1. 

Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, United States

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

Received  April 2014 Revised  August 2014 Published  May 2015

We prove optimal pointwise Schauder estimates in the spatial variables for solutions of linear parabolic integro-differential equations. Optimal Hölder estimates in space-time for those spatial derivatives are also obtained.
Citation: Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977
References:
[1]

B. Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., XIII (2014), 609.  doi: 10.2422/2036-2145.201202_007.  Google Scholar

[2]

R. F. Bass, Regularity results for stable-like operators,, J. Funct. Anal., 257 (2009), 2693.  doi: 10.1016/j.jfa.2009.05.012.  Google Scholar

[3]

A. Brandt, Interior Schauder estimates for parabolic differential- (or difference-) equations via the maximum principle,, Israel J. Math., 7 (1969), 254.  doi: 10.1007/BF02787619.  Google Scholar

[4]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. of Math. (2), 130 (1989), 189.  doi: 10.2307/1971480.  Google Scholar

[5]

L. A. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[6]

L. A. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation,, Arch. Ration. Mech. Anal., 200 (2011), 59.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[7]

L. A. Caffarelli and L. Silvestre, The Evans-Krylov theorem for non local fully non linear equations,, Ann. of Math. (2), 174 (2011), 1163.  doi: 10.4007/annals.2011.174.2.9.  Google Scholar

[8]

L. A. Caffarelli, C. Chan and A. Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849.  doi: 10.1090/S0894-0347-2011-00698-X.  Google Scholar

[9]

H. A. Chang Lara and G. Davila, Regularity for solutions of non local parabolic equations,, Calc. Var. Partial Differential Equations, 49 (2014), 139.  doi: 10.1007/s00526-012-0576-2.  Google Scholar

[10]

H. A. Chang Lara and G. Davila, Regularity for solutions of non local parabolic equations II,, J. Differential Equations, 256 (2014), 130.  doi: 10.1016/j.jde.2013.08.016.  Google Scholar

[11]

H. Dong and D. Kim, Schauder estimates for a class of non-local elliptic equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2319.  doi: 10.3934/dcds.2013.33.2319.  Google Scholar

[12]

H. Dong and S. Kim, Partial Schauder estimates for second-order elliptic and parabolic equations,, Calc. Var. Partial Differential Equations, 40 (2011), 481.  doi: 10.1007/s00526-010-0348-9.  Google Scholar

[13]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators,, Comm. Partial Differential Equations, 38 (2013), 1539.  doi: 10.1080/03605302.2013.808211.  Google Scholar

[14]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations,, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183.   Google Scholar

[15]

B. F. Knerr, Parabolic interior Schauder estimates by the maximum principle,, Arch. Ration. Mech. Anal., 75 (1980), 51.  doi: 10.1007/BF00284620.  Google Scholar

[16]

D. Kriventsov, $C^{1,\alpha}$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels,, Comm. Partial Differential Equations, 38 (2013), 2081.  doi: 10.1080/03605302.2013.831990.  Google Scholar

[17]

N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients,, Comm. Partial Differential Equations, 35 (2010), 1.  doi: 10.1080/03605300903424700.  Google Scholar

[18]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith, (1968).   Google Scholar

[19]

Y. Y. Li and L. Nirenberg, Estimates for elliptic system from composition material,, Comm. Pure Appl. Math., 56 (2003), 892.  doi: 10.1002/cpa.10079.  Google Scholar

[20]

G. M. Lieberman, Intermediate Schauder theory for second order parabolic equations. IV. Time irregularity and regularity,, Differential Integral Equations, 5 (1992), 1219.   Google Scholar

[21]

L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time,, SIAM J. Math. Anal., 32 (2000), 588.  doi: 10.1137/S0036141098342842.  Google Scholar

[22]

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem,, Potential Anal., 40 (2014), 539.  doi: 10.1007/s11118-013-9359-4.  Google Scholar

[23]

J. Serra, Regularity for fully nonlinear nonlocal parabolic equations with rough kernels,, Calculus of Variations and Partial Differential Equations, (2014).  doi: 10.1007/s00526-014-0798-6.  Google Scholar

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[25]

G. Tian and X.-J.Wang, A priori estimates for fully nonlinear parabolic equations,, Int. Math. Res. Not. IMRN, (2013), 3857.   Google Scholar

show all references

References:
[1]

B. Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., XIII (2014), 609.  doi: 10.2422/2036-2145.201202_007.  Google Scholar

[2]

R. F. Bass, Regularity results for stable-like operators,, J. Funct. Anal., 257 (2009), 2693.  doi: 10.1016/j.jfa.2009.05.012.  Google Scholar

[3]

A. Brandt, Interior Schauder estimates for parabolic differential- (or difference-) equations via the maximum principle,, Israel J. Math., 7 (1969), 254.  doi: 10.1007/BF02787619.  Google Scholar

[4]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. of Math. (2), 130 (1989), 189.  doi: 10.2307/1971480.  Google Scholar

[5]

L. A. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations,, Comm. Pure Appl. Math., 62 (2009), 597.  doi: 10.1002/cpa.20274.  Google Scholar

[6]

L. A. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation,, Arch. Ration. Mech. Anal., 200 (2011), 59.  doi: 10.1007/s00205-010-0336-4.  Google Scholar

[7]

L. A. Caffarelli and L. Silvestre, The Evans-Krylov theorem for non local fully non linear equations,, Ann. of Math. (2), 174 (2011), 1163.  doi: 10.4007/annals.2011.174.2.9.  Google Scholar

[8]

L. A. Caffarelli, C. Chan and A. Vasseur, Regularity theory for parabolic nonlinear integral operators,, J. Amer. Math. Soc., 24 (2011), 849.  doi: 10.1090/S0894-0347-2011-00698-X.  Google Scholar

[9]

H. A. Chang Lara and G. Davila, Regularity for solutions of non local parabolic equations,, Calc. Var. Partial Differential Equations, 49 (2014), 139.  doi: 10.1007/s00526-012-0576-2.  Google Scholar

[10]

H. A. Chang Lara and G. Davila, Regularity for solutions of non local parabolic equations II,, J. Differential Equations, 256 (2014), 130.  doi: 10.1016/j.jde.2013.08.016.  Google Scholar

[11]

H. Dong and D. Kim, Schauder estimates for a class of non-local elliptic equations,, Discrete Contin. Dyn. Syst., 33 (2013), 2319.  doi: 10.3934/dcds.2013.33.2319.  Google Scholar

[12]

H. Dong and S. Kim, Partial Schauder estimates for second-order elliptic and parabolic equations,, Calc. Var. Partial Differential Equations, 40 (2011), 481.  doi: 10.1007/s00526-010-0348-9.  Google Scholar

[13]

M. Felsinger and M. Kassmann, Local regularity for parabolic nonlocal operators,, Comm. Partial Differential Equations, 38 (2013), 1539.  doi: 10.1080/03605302.2013.808211.  Google Scholar

[14]

M. Kassmann and R. W. Schwab, Regularity results for nonlocal parabolic equations,, Riv. Math. Univ. Parma (N.S.), 5 (2014), 183.   Google Scholar

[15]

B. F. Knerr, Parabolic interior Schauder estimates by the maximum principle,, Arch. Ration. Mech. Anal., 75 (1980), 51.  doi: 10.1007/BF00284620.  Google Scholar

[16]

D. Kriventsov, $C^{1,\alpha}$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels,, Comm. Partial Differential Equations, 38 (2013), 2081.  doi: 10.1080/03605302.2013.831990.  Google Scholar

[17]

N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coefficients,, Comm. Partial Differential Equations, 35 (2010), 1.  doi: 10.1080/03605300903424700.  Google Scholar

[18]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Translated from the Russian by S. Smith, (1968).   Google Scholar

[19]

Y. Y. Li and L. Nirenberg, Estimates for elliptic system from composition material,, Comm. Pure Appl. Math., 56 (2003), 892.  doi: 10.1002/cpa.10079.  Google Scholar

[20]

G. M. Lieberman, Intermediate Schauder theory for second order parabolic equations. IV. Time irregularity and regularity,, Differential Integral Equations, 5 (1992), 1219.   Google Scholar

[21]

L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time,, SIAM J. Math. Anal., 32 (2000), 588.  doi: 10.1137/S0036141098342842.  Google Scholar

[22]

R. Mikulevicius and H. Pragarauskas, On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem,, Potential Anal., 40 (2014), 539.  doi: 10.1007/s11118-013-9359-4.  Google Scholar

[23]

J. Serra, Regularity for fully nonlinear nonlocal parabolic equations with rough kernels,, Calculus of Variations and Partial Differential Equations, (2014).  doi: 10.1007/s00526-014-0798-6.  Google Scholar

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton Mathematical Series, (1970).   Google Scholar

[25]

G. Tian and X.-J.Wang, A priori estimates for fully nonlinear parabolic equations,, Int. Math. Res. Not. IMRN, (2013), 3857.   Google Scholar

[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[8]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[9]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[10]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[11]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[12]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[13]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[14]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[15]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[16]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[17]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[18]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[19]

Aisling McGlinchey, Oliver Mason. Observations on the bias of nonnegative mechanisms for differential privacy. Foundations of Data Science, 2020, 2 (4) : 429-442. doi: 10.3934/fods.2020020

[20]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (19)

Other articles
by authors

[Back to Top]