-
Previous Article
Characterization of function spaces via low regularity mollifiers
- DCDS Home
- This Issue
-
Next Article
Schauder estimates for solutions of linear parabolic integro-differential equations
Quasistatic evolution of magnetoelastic plates via dimension reduction
1. | Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, 182 08 Prague |
2. | Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna |
3. | Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino |
References:
[1] |
N. Anuniwat, M. Ding, S. J. Poon, S. A. Wolf and J. Lu, Strain-induced enhancement of coercivity in amorphous TbFeCo films, J. Appl. Phys., 113 (2013), 043905.
doi: 10.1063/1.4788807. |
[2] |
J.-F. Babadjian, Quasistatic evolution of a brittle thin film, Calc. Var. Partial Differential Equations, 26 (2006), 69-118.
doi: 10.1007/s00526-005-0369-y. |
[3] |
B. Benešová, M Kružík and G. Pathó, A mesoscopic thermomechanically coupled model for thin-film shape-memory alloys by dimension reduction and scale transition, Contin. Mech. Thermodyn., 26 (2014), 683-713.
doi: 10.1007/s00161-013-0323-8. |
[4] |
A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Z. Angew. Math. Phys., 64 (2013), 343-359.
doi: 10.1007/s00033-012-0223-y. |
[5] |
A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069.
doi: 10.1142/S0218202511005246. |
[6] |
A. Braides, $\Gamma$-Convergence for Beginners, Oxford University Press, Oxford, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[7] | |
[8] |
C. Chappert and P. Bruno, Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films, J. Appl. Phys., 64 (1988), p5736.
doi: 10.1063/1.342243. |
[9] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäser, Basel, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[10] |
D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through thermodynamic compatibility, Smart Mat. Struct., 22 (2013), 095009. |
[11] |
E. Davoli, Linearized plastic plate models as $\Gamma$-limits of 3D finite elastoplasticity, ESAIM Control Optim. Calc. Var., 20 (2014), 725-747.
doi: 10.1051/cocv/2013081. |
[12] |
E. Davoli, Quasistatic evolution models for thin plates arising as low energy $\Gamma$-limits of finite plasticity, Math. Models Methods Appl. Sci., 24 (2014), 2085-2153.
doi: 10.1142/S021820251450016X. |
[13] |
E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by Gamma-convergence, Ann. Inst. H. Poincaré Anal. Nonlin., 30 (2013), 615-660.
doi: 10.1016/j.anihpc.2012.11.001. |
[14] |
A. DeSimone and G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Rational Mech. Anal., 144 (1998), 107-120.
doi: 10.1007/s002050050114. |
[15] |
A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.
doi: 10.1016/S0022-5096(01)00050-3. |
[16] |
A. Dorfmann and R. W. Ogden, Some problems in nonlinear magnetoelasticity, Z. Angew. Math. Phys., 56 (2005), 718-745.
doi: 10.1007/s00033-004-4066-z. |
[17] |
L. Freddi, R. Paroni and C. Zanini, Dimension reduction of a crack evolution problem in a linearly elastic plate, Asymptotic Anal., 70 (2010), 101-123. |
[18] |
L. Freddi, T. Roubíček, R. Paroni and C. Zanini, Quasistatic delamination models for Kirchhoff-Love plates, Z. Angew. Math. Mech., 91 (2011), 845-865.
doi: 10.1002/zamm.201000171. |
[19] |
L. Freddi, T. Roubíček and C. Zanini, Quasistatic delamination of sandwich-like Kirchhoff-Love plates, J. Elasticity, 113 (2013), 219-250.
doi: 10.1007/s10659-012-9419-9. |
[20] |
V. Gehanno, A. Marty, B. Gilles and Y. Samson, Magnetic domains in epitaxial ordered FePd(001) thin films with perpendicular magnetic anisotropy, Phys. Rev. B, 55 (1997), 12552-12555.
doi: 10.1103/PhysRevB.55.12552. |
[21] |
G. Gioia and R. D. James, Micromagnetics of very thin films, Proc. Roy. Soc. Lond. A, 453 (1997), 213-223.
doi: 10.1098/rspa.1997.0013. |
[22] |
M. L. Hodgdon, Applications of a theory of ferromagnetic hysteresis, IEEE Trans. Mag., 24 (1988), 218-221.
doi: 10.1109/20.43893. |
[23] |
A. Hubert and R. Schäfer, Magnetic Domains, Springer, New York, 1998. |
[24] |
R. D. James, Configurationsl forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever, Contin. Mech. Thermodyn., 14 (2002), 55-86.
doi: 10.1007/s001610100072. |
[25] |
R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Continuum Mech. Thermodyn., 2 (1990), 215-239.
doi: 10.1007/BF01129598. |
[26] |
M. Kaltenbacher, M. Meiler and M. Ertl, Physical modeling and numerical computation of magnetostriction, COMPEL, 28 (2009), 819-832.
doi: 10.1108/03321640910958946. |
[27] |
M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism, SIAM Review, 48 (2006), 439-483.
doi: 10.1137/S0036144504446187. |
[28] |
M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via $\Gamma$-convergence, Math. Models Meth. Appl. Sci., 21 (2011), 1961-1986.
doi: 10.1142/S0218202511005611. |
[29] |
M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via $\Gamma$-convergence, NoDEA Nonlinear Differential Eq. Applications, 19 (2012), 437-457.
doi: 10.1007/s00030-011-0137-y. |
[30] |
A. Mielke, Evolution in rate-independent systems (ch. 6), in Handbook of Differential Equations, Evolutionary Equations (eds. C. Dafermos and E. Feireisl), Vol. 2, Elsevier B. V., 2005, 461-559. |
[31] |
A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics (eds. R. Helmig, A. Mielke and B. Wohlmuth), Series Lecture Notes in Applied and Computational Mechanics, 28, Springer, 2006, 399-428.
doi: 10.1007/978-3-540-34961-7_12. |
[32] |
A. Mielke, Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction, Phys. B, 407 (2012), 1330-1335.
doi: 10.1016/j.physb.2011.10.013. |
[33] |
A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, M2AN Math. Model. Numer. Anal., 43 (2009), 399-428.
doi: 10.1051/m2an/2009009. |
[34] |
A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-imits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[35] |
A. Mielke and F. Theil, On rate-independent hysteresis model, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7. |
[36] |
L. Néel, L'approche a la saturation de la magnétostriction, J. Phys. Radium, 15 (1954), 376-378. |
[37] |
H. J. Richter, The transition from longitudinal to perpendicular recording, J. Phys. D: Appl. Phys., 40 (2007), R149-R177.
doi: 10.1088/0022-3727/40/9/R01. |
[38] |
R. T. Rockafellar and R. J.-B Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-02431-3. |
[39] |
T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics, Z. Angew. Math. Phys., 55 (2004), 159-182.
doi: 10.1007/s00033-003-0110-7. |
[40] |
T. Roubíček and M. Kružík, Mesoscopic model for ferromagnets with isotropic hardening, Z. Angew. Math. Phys., 56 (2005), 107-135.
doi: 10.1007/s00033-003-2108-6. |
[41] |
T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis, Contin. Mech. Thermodyn., 26 (2014), 783-810.
doi: 10.1007/s00161-014-0339-8. |
[42] |
T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43.
doi: 10.1007/s00205-013-0648-2. |
[43] |
P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials, SIAM J. Math. Anal., 36 (2005), 2004-2019.
doi: 10.1137/S0036141004442021. |
[44] |
B. Schulz and K. Baberschke, Crossover form in-plane to perpendicular magnetization in ultrathin Ni/Cu(001) films, Phys. Rev. B, 50 (1994), 13467. |
[45] |
A. D. C. Viegas, M. A. Correa, L. Santi, R. B. da Silva, F. Bohn, M. Carara and R. L. Somme, Thickness dependence of the high-frequency magnetic permeability in amorphous $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ thin films, J. Appl. Phys., 101 (2007), 033908. |
[46] |
A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Phys. B, 233 (1997), 365-369.
doi: 10.1016/S0921-4526(97)00322-0. |
[47] |
A. Visintin, Maxwell's equations with vector hysteresis, Arch. Ration. Mech. Anal., 175 (2005), 1-37.
doi: 10.1007/s00205-004-0333-6. |
[48] |
J. Wang and P. Steinmann, A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys, J. Mech. Phys. Solids, 60 (2012), 1179-1200.
doi: 10.1016/j.jmps.2012.02.003. |
show all references
References:
[1] |
N. Anuniwat, M. Ding, S. J. Poon, S. A. Wolf and J. Lu, Strain-induced enhancement of coercivity in amorphous TbFeCo films, J. Appl. Phys., 113 (2013), 043905.
doi: 10.1063/1.4788807. |
[2] |
J.-F. Babadjian, Quasistatic evolution of a brittle thin film, Calc. Var. Partial Differential Equations, 26 (2006), 69-118.
doi: 10.1007/s00526-005-0369-y. |
[3] |
B. Benešová, M Kružík and G. Pathó, A mesoscopic thermomechanically coupled model for thin-film shape-memory alloys by dimension reduction and scale transition, Contin. Mech. Thermodyn., 26 (2014), 683-713.
doi: 10.1007/s00161-013-0323-8. |
[4] |
A.-L. Bessoud, M. Kružík and U. Stefanelli, A macroscopic model for magnetic shape memory alloys, Z. Angew. Math. Phys., 64 (2013), 343-359.
doi: 10.1007/s00033-012-0223-y. |
[5] |
A.-L. Bessoud and U. Stefanelli, Magnetic shape memory alloys: Three-dimensional modeling and analysis, Math. Models Meth. Appl. Sci., 21 (2011), 1043-1069.
doi: 10.1142/S0218202511005246. |
[6] |
A. Braides, $\Gamma$-Convergence for Beginners, Oxford University Press, Oxford, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[7] | |
[8] |
C. Chappert and P. Bruno, Magnetic anisotropy in metallic ultrathin films and related experiments on cobalt films, J. Appl. Phys., 64 (1988), p5736.
doi: 10.1063/1.342243. |
[9] |
G. Dal Maso, An Introduction to $\Gamma$-Convergence, Birkhäser, Basel, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[10] |
D. Davino, P. Krejčí and C. Visone, Fully coupled modeling of magnetomechanical hysteresis through thermodynamic compatibility, Smart Mat. Struct., 22 (2013), 095009. |
[11] |
E. Davoli, Linearized plastic plate models as $\Gamma$-limits of 3D finite elastoplasticity, ESAIM Control Optim. Calc. Var., 20 (2014), 725-747.
doi: 10.1051/cocv/2013081. |
[12] |
E. Davoli, Quasistatic evolution models for thin plates arising as low energy $\Gamma$-limits of finite plasticity, Math. Models Methods Appl. Sci., 24 (2014), 2085-2153.
doi: 10.1142/S021820251450016X. |
[13] |
E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by Gamma-convergence, Ann. Inst. H. Poincaré Anal. Nonlin., 30 (2013), 615-660.
doi: 10.1016/j.anihpc.2012.11.001. |
[14] |
A. DeSimone and G. Dolzmann, Existence of minimizers for a variational problem in two-dimensional nonlinear magnetoelasticity, Arch. Rational Mech. Anal., 144 (1998), 107-120.
doi: 10.1007/s002050050114. |
[15] |
A. DeSimone and R. D. James, A constrained theory of magnetoelasticity, J. Mech. Phys. Solids, 50 (2002), 283-320.
doi: 10.1016/S0022-5096(01)00050-3. |
[16] |
A. Dorfmann and R. W. Ogden, Some problems in nonlinear magnetoelasticity, Z. Angew. Math. Phys., 56 (2005), 718-745.
doi: 10.1007/s00033-004-4066-z. |
[17] |
L. Freddi, R. Paroni and C. Zanini, Dimension reduction of a crack evolution problem in a linearly elastic plate, Asymptotic Anal., 70 (2010), 101-123. |
[18] |
L. Freddi, T. Roubíček, R. Paroni and C. Zanini, Quasistatic delamination models for Kirchhoff-Love plates, Z. Angew. Math. Mech., 91 (2011), 845-865.
doi: 10.1002/zamm.201000171. |
[19] |
L. Freddi, T. Roubíček and C. Zanini, Quasistatic delamination of sandwich-like Kirchhoff-Love plates, J. Elasticity, 113 (2013), 219-250.
doi: 10.1007/s10659-012-9419-9. |
[20] |
V. Gehanno, A. Marty, B. Gilles and Y. Samson, Magnetic domains in epitaxial ordered FePd(001) thin films with perpendicular magnetic anisotropy, Phys. Rev. B, 55 (1997), 12552-12555.
doi: 10.1103/PhysRevB.55.12552. |
[21] |
G. Gioia and R. D. James, Micromagnetics of very thin films, Proc. Roy. Soc. Lond. A, 453 (1997), 213-223.
doi: 10.1098/rspa.1997.0013. |
[22] |
M. L. Hodgdon, Applications of a theory of ferromagnetic hysteresis, IEEE Trans. Mag., 24 (1988), 218-221.
doi: 10.1109/20.43893. |
[23] |
A. Hubert and R. Schäfer, Magnetic Domains, Springer, New York, 1998. |
[24] |
R. D. James, Configurationsl forces in magnetism with application to the dynamics of a small-scale ferromagnetic shape memory cantilever, Contin. Mech. Thermodyn., 14 (2002), 55-86.
doi: 10.1007/s001610100072. |
[25] |
R. D. James and D. Kinderlehrer, Frustration in ferromagnetic materials, Continuum Mech. Thermodyn., 2 (1990), 215-239.
doi: 10.1007/BF01129598. |
[26] |
M. Kaltenbacher, M. Meiler and M. Ertl, Physical modeling and numerical computation of magnetostriction, COMPEL, 28 (2009), 819-832.
doi: 10.1108/03321640910958946. |
[27] |
M. Kružík and A. Prohl, Recent developments in modeling, analysis and numerics of ferromagnetism, SIAM Review, 48 (2006), 439-483.
doi: 10.1137/S0036144504446187. |
[28] |
M. Liero and A. Mielke, An evolutionary elastoplastic plate model derived via $\Gamma$-convergence, Math. Models Meth. Appl. Sci., 21 (2011), 1961-1986.
doi: 10.1142/S0218202511005611. |
[29] |
M. Liero and T. Roche, Rigorous derivation of a plate theory in linear elastoplasticity via $\Gamma$-convergence, NoDEA Nonlinear Differential Eq. Applications, 19 (2012), 437-457.
doi: 10.1007/s00030-011-0137-y. |
[30] |
A. Mielke, Evolution in rate-independent systems (ch. 6), in Handbook of Differential Equations, Evolutionary Equations (eds. C. Dafermos and E. Feireisl), Vol. 2, Elsevier B. V., 2005, 461-559. |
[31] |
A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in Multifield Problems in Solid and Fluid Mechanics (eds. R. Helmig, A. Mielke and B. Wohlmuth), Series Lecture Notes in Applied and Computational Mechanics, 28, Springer, 2006, 399-428.
doi: 10.1007/978-3-540-34961-7_12. |
[32] |
A. Mielke, Generalized Prandtl-Ishlinskii operators arising from homogenization and dimension reduction, Phys. B, 407 (2012), 1330-1335.
doi: 10.1016/j.physb.2011.10.013. |
[33] |
A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity, M2AN Math. Model. Numer. Anal., 43 (2009), 399-428.
doi: 10.1051/m2an/2009009. |
[34] |
A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-imits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[35] |
A. Mielke and F. Theil, On rate-independent hysteresis model, NoDEA Nonlinear Diff. Equations Applications, 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7. |
[36] |
L. Néel, L'approche a la saturation de la magnétostriction, J. Phys. Radium, 15 (1954), 376-378. |
[37] |
H. J. Richter, The transition from longitudinal to perpendicular recording, J. Phys. D: Appl. Phys., 40 (2007), R149-R177.
doi: 10.1088/0022-3727/40/9/R01. |
[38] |
R. T. Rockafellar and R. J.-B Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 317, Springer-Verlag, Berlin, 2009.
doi: 10.1007/978-3-642-02431-3. |
[39] |
T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics, Z. Angew. Math. Phys., 55 (2004), 159-182.
doi: 10.1007/s00033-003-0110-7. |
[40] |
T. Roubíček and M. Kružík, Mesoscopic model for ferromagnets with isotropic hardening, Z. Angew. Math. Phys., 56 (2005), 107-135.
doi: 10.1007/s00033-003-2108-6. |
[41] |
T. Roubíček and U. Stefanelli, Magnetic shape-memory alloys: Thermomechanical modeling and analysis, Contin. Mech. Thermodyn., 26 (2014), 783-810.
doi: 10.1007/s00161-014-0339-8. |
[42] |
T. Roubíček and G. Tomassetti, Phase transformations in electrically conductive ferromagnetic shape-memory alloys, their thermodynamics and analysis, Arch. Ration. Mech. Anal., 210 (2013), 1-43.
doi: 10.1007/s00205-013-0648-2. |
[43] |
P. Rybka and M. Luskin, Existence of energy minimizers for magnetostrictive materials, SIAM J. Math. Anal., 36 (2005), 2004-2019.
doi: 10.1137/S0036141004442021. |
[44] |
B. Schulz and K. Baberschke, Crossover form in-plane to perpendicular magnetization in ultrathin Ni/Cu(001) films, Phys. Rev. B, 50 (1994), 13467. |
[45] |
A. D. C. Viegas, M. A. Correa, L. Santi, R. B. da Silva, F. Bohn, M. Carara and R. L. Somme, Thickness dependence of the high-frequency magnetic permeability in amorphous $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ thin films, J. Appl. Phys., 101 (2007), 033908. |
[46] |
A. Visintin, Modified Landau-Lifshitz equation for ferromagnetism, Phys. B, 233 (1997), 365-369.
doi: 10.1016/S0921-4526(97)00322-0. |
[47] |
A. Visintin, Maxwell's equations with vector hysteresis, Arch. Ration. Mech. Anal., 175 (2005), 1-37.
doi: 10.1007/s00205-004-0333-6. |
[48] |
J. Wang and P. Steinmann, A variational approach towards the modeling of magnetic field-induced strains in magnetic shape memory alloys, J. Mech. Phys. Solids, 60 (2012), 1179-1200.
doi: 10.1016/j.jmps.2012.02.003. |
[1] |
T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215 |
[2] |
Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 |
[3] |
Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256 |
[4] |
Riccarda Rossi, Giuseppe Savaré. A characterization of energetic and $BV$ solutions to one-dimensional rate-independent systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 167-191. doi: 10.3934/dcdss.2013.6.167 |
[5] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[6] |
Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i |
[7] |
Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591 |
[8] |
Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257 |
[9] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[10] |
Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649 |
[11] |
Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076 |
[12] |
Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585 |
[13] |
Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145 |
[14] |
Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i |
[15] |
M. A. Efendiev. On the compactness of the stable set for rate independent processes. Communications on Pure and Applied Analysis, 2003, 2 (4) : 495-509. doi: 10.3934/cpaa.2003.2.495 |
[16] |
Martin Kružík, Ulisse Stefanelli, Jan Zeman. Existence results for incompressible magnetoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2615-2623. doi: 10.3934/dcds.2015.35.2615 |
[17] |
Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257 |
[18] |
Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411 |
[19] |
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 |
[20] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]