December  2015, 35(12): 6015-6030. doi: 10.3934/dcds.2015.35.6015

Characterization of function spaces via low regularity mollifiers

1. 

Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France

2. 

Université de Lyon, Université Lyon 1, Institut Camille Jordan CNRS UMR 5208, 43, boulevard du 11 november 1918, F-69622 Villeurbanne

Received  April 2014 Published  May 2015

Smoothness of a function $f:\mathbb{R}^n\to\mathbb{R}$ can be measured in terms of the rate of convergence of $f*\rho_{\epsilon}$ to $f$, where $\rho$ is an appropriate mollifier. In the framework of fractional Sobolev spaces, we characterize the "appropriate" mollifiers. We also obtain sufficient conditions, close to being necessary, which ensure that $\rho$ is adapted to a given scale of spaces. Finally, we examine in detail the case where $\rho$ is a characteristic function.
Citation: Xavier Lamy, Petru Mironescu. Characterization of function spaces via low regularity mollifiers. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6015-6030. doi: 10.3934/dcds.2015.35.6015
References:
[1]

G. Bourdaud, Ondelettes et espaces de Besov, Rev. Mat. Iberoamericana, 11 (1995), 477-512. doi: 10.4171/RMI/181.  Google Scholar

[2]

L. Grafakos, Classical Fourier Analysis, 2nd edition, Graduate Texts in Mathematics, 249, Springer, New York, 2008.  Google Scholar

[3]

E. Stein, An $H^{1}$ function with nonsummable Fourier expansion, in Harmonic Analysis (Cortona, 1982), Lecture Notes in Math., 992, Springer, Berlin, 1983, 193-200. doi: 10.1007/BFb0069159.  Google Scholar

[4]

E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993,  Google Scholar

[5]

E. Stein, M. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain $H^p$ classes, in Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1, 1981, 81-97.  Google Scholar

[6]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam, 1978.  Google Scholar

[7]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[8]

H. Triebel, Theory of Function Spaces. II, Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0346-0419-2.  Google Scholar

show all references

References:
[1]

G. Bourdaud, Ondelettes et espaces de Besov, Rev. Mat. Iberoamericana, 11 (1995), 477-512. doi: 10.4171/RMI/181.  Google Scholar

[2]

L. Grafakos, Classical Fourier Analysis, 2nd edition, Graduate Texts in Mathematics, 249, Springer, New York, 2008.  Google Scholar

[3]

E. Stein, An $H^{1}$ function with nonsummable Fourier expansion, in Harmonic Analysis (Cortona, 1982), Lecture Notes in Math., 992, Springer, Berlin, 1983, 193-200. doi: 10.1007/BFb0069159.  Google Scholar

[4]

E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993,  Google Scholar

[5]

E. Stein, M. Taibleson and G. Weiss, Weak type estimates for maximal operators on certain $H^p$ classes, in Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1, 1981, 81-97.  Google Scholar

[6]

H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing Co., Amsterdam, 1978.  Google Scholar

[7]

H. Triebel, Theory of Function Spaces, Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983. doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[8]

H. Triebel, Theory of Function Spaces. II, Monographs in Mathematics, 84, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0346-0419-2.  Google Scholar

[1]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3045-3062. doi: 10.3934/dcds.2020397

[2]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[3]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[4]

Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883

[5]

Hermann Brunner, Jingtang Ma. Abstract cascading multigrid preconditioners in Besov spaces. Communications on Pure & Applied Analysis, 2006, 5 (2) : 349-365. doi: 10.3934/cpaa.2006.5.349

[6]

Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103

[7]

Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284

[8]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[9]

Houyu Jia, Xiaofeng Liu. Local existence and blowup criterion of the Lagrangian averaged Euler equations in Besov spaces. Communications on Pure & Applied Analysis, 2008, 7 (4) : 845-852. doi: 10.3934/cpaa.2008.7.845

[10]

Mikil Foss, Joe Geisbauer. Higher differentiability in the context of Besov spaces for a class of nonlocal functionals. Evolution Equations & Control Theory, 2013, 2 (2) : 301-318. doi: 10.3934/eect.2013.2.301

[11]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[12]

Qing Hong, Guorong Hu. Molecular decomposition and a class of Fourier multipliers for bi-parameter modulation spaces. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3103-3120. doi: 10.3934/cpaa.2019139

[13]

Carlos Conca, Luis Friz, Jaime H. Ortega. Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks & Heterogeneous Media, 2008, 3 (3) : 555-566. doi: 10.3934/nhm.2008.3.555

[14]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 201-210. doi: 10.3934/dcds.2004.10.201

[15]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[16]

Daoyuan Fang, Chenyin Qian. Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Communications on Pure & Applied Analysis, 2014, 13 (2) : 585-603. doi: 10.3934/cpaa.2014.13.585

[17]

Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453

[18]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[19]

Wen Tan, Bo-Qing Dong, Zhi-Min Chen. Large-time regular solutions to the modified quasi-geostrophic equation in Besov spaces. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3749-3765. doi: 10.3934/dcds.2019152

[20]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]