-
Previous Article
Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials
- DCDS Home
- This Issue
-
Next Article
Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations
Regularity of the homogeneous Monge-Ampère equation
1. | Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 0200, Australia |
2. | Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200 |
References:
[1] |
J. Benoist and J. B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?,, SIAM J. Math. Anal., 27 (1996), 1661.
doi: 10.1137/S0036141094265936. |
[2] |
L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of Monge-Ampère equations,, Ann. Math., 131 (1990), 135.
doi: 10.2307/1971510. |
[3] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation,, Revista Math. Iberoamericana, 2 (1986), 19.
doi: 10.4171/RMI/23. |
[4] |
X. Chen, Complex Monge-Ampère and symplectic manifolds,, J. Diff. Geom., 56 (2000), 189.
|
[5] |
X. Chen and W. He, The space of volume forms,, Int. Math. Res. Not. IMRN, (2011), 967.
doi: 10.1093/imrn/rnq099. |
[6] |
G. De Philippis and A. Figallli, Optimal regularity of the convex envelope,, Trans. Amer. Math. Soc., 367 (2015), 4407.
doi: 10.1090/S0002-9947-2014-06306-X. |
[7] |
S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics,, Northern California Symplectic Geometry Seminar, 196 (1999), 13.
|
[8] |
P. Guan, Regularity of a class of quasilinear degenerate elliptic equations,, Advances in Math., 132 (1997), 24.
doi: 10.1006/aima.1997.1677. |
[9] |
P. Guan and E. T. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane,, Trans. Amer. Math. Soc., 361 (2009), 4581.
doi: 10.1090/S0002-9947-09-04640-6. |
[10] |
P. Guan, N. S. Trudinger and X.-J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations,, Acta. Math., 182 (1999), 87.
doi: 10.1007/BF02392824. |
[11] |
J. X. Hong, Dirichlet problems for general Monge-Ampère equations,, Math. Z., 209 (1992), 289.
doi: 10.1007/BF02570835. |
[12] |
J. X. Hong, G. Huang and W. Wang, Existence of global smooth solutions to Dirichlet problem for degenrate elliptic Monge-Ampère equations,, Comm. PDE, 36 (2011), 635.
doi: 10.1080/03605302.2010.514171. |
[13] |
B. Kirchheim and J. Kristensen, Differentiability of convex envelopes,, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 725.
doi: 10.1016/S0764-4442(01)02117-6. |
[14] |
A. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope,, Trans. Amer. Math. Soc., 363 (2011), 5871.
doi: 10.1090/S0002-9947-2011-05240-2. |
[15] |
A. V. Pogorelov, The Minkowski Multidimensional Problem,, J. Wiley, (1978).
|
[16] |
J. Rauch and B. A. Taylor, The Dirichlet problem for the multi-dimensional Monge-Ampère equation,, Rocky Mountain J. Math., 7 (1977), 345.
doi: 10.1216/RMJ-1977-7-2-345. |
[17] |
E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients,, Mem. Amer. Math. Soc., 180 (2006).
doi: 10.1090/memo/0847. |
[18] |
O. Savin, Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation,, J. Amer. Math. Soc., 26 (2013), 63.
doi: 10.1090/S0894-0347-2012-00747-4. |
[19] |
O. Savin, Global $W^{2,p}$ estimates for the Monge-Ampère equation,, Proc. Amer. Math. Soc., 141 (2013), 3573.
doi: 10.1090/S0002-9939-2013-11748-X. |
[20] |
O. Savin, A localisation theorem and boundary regularity for a class of degenerate Monge-Ampère equations,, J. Differential Equations, 256 (2014), 327.
doi: 10.1016/j.jde.2013.08.019. |
[21] |
S. Semmes, Complex Monge-Ampère and symplectic manifolds,, Amer. J. Math., 114 (1992), 495.
doi: 10.2307/2374768. |
[22] |
C. Rios, E. T. Sawyer and R. L. Wheeden, A higher-dimensional partial Legendre transform, and regularity of degenerate Monge-Ampère equations,, Adv. Math., 193 (2005), 373.
doi: 10.1016/j.aim.2004.05.009. |
[23] |
C. Rios, E. T. Sawyer and R. L. Wheeden, Regularity of subelliptic Monge-Ampère equations,, Advances in Math., 217 (2008), 967.
doi: 10.1016/j.aim.2007.07.004. |
[24] |
N. S. Trudinger and J. Urbas, On the second derivative estimates for equations of Monge-Ampère type,, Bull. Austral. Math. Soc., 30 (1984), 321.
doi: 10.1017/S0004972700002069. |
[25] |
N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations,, Ann. of Math. (2), 167 (2008), 993.
doi: 10.4007/annals.2008.167.993. |
[26] |
N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications,, Handbook of Geometric Analysis, 7 (2008), 467.
|
[27] |
X. J. Wang, Some counterexamples to the regularity of Monge-Ampère equations,, Proc. Amer. Math. Soc., 123 (1995), 841.
doi: 10.2307/2160809. |
show all references
References:
[1] |
J. Benoist and J. B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?,, SIAM J. Math. Anal., 27 (1996), 1661.
doi: 10.1137/S0036141094265936. |
[2] |
L. Caffarelli, Interior $W^{2,p}$ estimates for solutions of Monge-Ampère equations,, Ann. Math., 131 (1990), 135.
doi: 10.2307/1971510. |
[3] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation,, Revista Math. Iberoamericana, 2 (1986), 19.
doi: 10.4171/RMI/23. |
[4] |
X. Chen, Complex Monge-Ampère and symplectic manifolds,, J. Diff. Geom., 56 (2000), 189.
|
[5] |
X. Chen and W. He, The space of volume forms,, Int. Math. Res. Not. IMRN, (2011), 967.
doi: 10.1093/imrn/rnq099. |
[6] |
G. De Philippis and A. Figallli, Optimal regularity of the convex envelope,, Trans. Amer. Math. Soc., 367 (2015), 4407.
doi: 10.1090/S0002-9947-2014-06306-X. |
[7] |
S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics,, Northern California Symplectic Geometry Seminar, 196 (1999), 13.
|
[8] |
P. Guan, Regularity of a class of quasilinear degenerate elliptic equations,, Advances in Math., 132 (1997), 24.
doi: 10.1006/aima.1997.1677. |
[9] |
P. Guan and E. T. Sawyer, Regularity of subelliptic Monge-Ampère equations in the plane,, Trans. Amer. Math. Soc., 361 (2009), 4581.
doi: 10.1090/S0002-9947-09-04640-6. |
[10] |
P. Guan, N. S. Trudinger and X.-J. Wang, On the Dirichlet problem for degenerate Monge-Ampère equations,, Acta. Math., 182 (1999), 87.
doi: 10.1007/BF02392824. |
[11] |
J. X. Hong, Dirichlet problems for general Monge-Ampère equations,, Math. Z., 209 (1992), 289.
doi: 10.1007/BF02570835. |
[12] |
J. X. Hong, G. Huang and W. Wang, Existence of global smooth solutions to Dirichlet problem for degenrate elliptic Monge-Ampère equations,, Comm. PDE, 36 (2011), 635.
doi: 10.1080/03605302.2010.514171. |
[13] |
B. Kirchheim and J. Kristensen, Differentiability of convex envelopes,, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 725.
doi: 10.1016/S0764-4442(01)02117-6. |
[14] |
A. Oberman and L. Silvestre, The Dirichlet problem for the convex envelope,, Trans. Amer. Math. Soc., 363 (2011), 5871.
doi: 10.1090/S0002-9947-2011-05240-2. |
[15] |
A. V. Pogorelov, The Minkowski Multidimensional Problem,, J. Wiley, (1978).
|
[16] |
J. Rauch and B. A. Taylor, The Dirichlet problem for the multi-dimensional Monge-Ampère equation,, Rocky Mountain J. Math., 7 (1977), 345.
doi: 10.1216/RMJ-1977-7-2-345. |
[17] |
E. T. Sawyer and R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients,, Mem. Amer. Math. Soc., 180 (2006).
doi: 10.1090/memo/0847. |
[18] |
O. Savin, Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation,, J. Amer. Math. Soc., 26 (2013), 63.
doi: 10.1090/S0894-0347-2012-00747-4. |
[19] |
O. Savin, Global $W^{2,p}$ estimates for the Monge-Ampère equation,, Proc. Amer. Math. Soc., 141 (2013), 3573.
doi: 10.1090/S0002-9939-2013-11748-X. |
[20] |
O. Savin, A localisation theorem and boundary regularity for a class of degenerate Monge-Ampère equations,, J. Differential Equations, 256 (2014), 327.
doi: 10.1016/j.jde.2013.08.019. |
[21] |
S. Semmes, Complex Monge-Ampère and symplectic manifolds,, Amer. J. Math., 114 (1992), 495.
doi: 10.2307/2374768. |
[22] |
C. Rios, E. T. Sawyer and R. L. Wheeden, A higher-dimensional partial Legendre transform, and regularity of degenerate Monge-Ampère equations,, Adv. Math., 193 (2005), 373.
doi: 10.1016/j.aim.2004.05.009. |
[23] |
C. Rios, E. T. Sawyer and R. L. Wheeden, Regularity of subelliptic Monge-Ampère equations,, Advances in Math., 217 (2008), 967.
doi: 10.1016/j.aim.2007.07.004. |
[24] |
N. S. Trudinger and J. Urbas, On the second derivative estimates for equations of Monge-Ampère type,, Bull. Austral. Math. Soc., 30 (1984), 321.
doi: 10.1017/S0004972700002069. |
[25] |
N. S. Trudinger and X. J. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations,, Ann. of Math. (2), 167 (2008), 993.
doi: 10.4007/annals.2008.167.993. |
[26] |
N. S. Trudinger and X. J. Wang, The Monge-Ampère equation and its geometric applications,, Handbook of Geometric Analysis, 7 (2008), 467.
|
[27] |
X. J. Wang, Some counterexamples to the regularity of Monge-Ampère equations,, Proc. Amer. Math. Soc., 123 (1995), 841.
doi: 10.2307/2160809. |
[1] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[2] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[3] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[4] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[5] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[6] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[7] |
Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021 |
[8] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[9] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[10] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[11] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[12] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[13] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[14] |
Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186 |
[15] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[16] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[17] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[18] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454 |
[19] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[20] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]