December  2015, 35(12): 6085-6112. doi: 10.3934/dcds.2015.35.6085

Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials

1. 

INdAM-COFUND Marie Curie Fellow, Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cédex, France

2. 

Center for Mathematical Analysis, Geometry and Dynamical Systems, Mathematics Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

3. 

Dipartimento di Matematica "Francesco Brioschi", Politecnico di Milano, p.za Leonardo da Vinci 32, 20133 Milano

Received  May 2014 Published  May 2015

For the cubic Schrödinger system with trapping potentials in $\mathbb{R}^N$, $N\leq3$, or in bounded domains, we investigate the existence and the orbital stability of standing waves having components with prescribed $L^2$-mass. We provide a variational characterization of such solutions, which gives information on the stability through a condition of Grillakis-Shatah-Strauss type. As an application, we show existence of conditionally orbitally stable solitary waves when: a) the masses are small, for almost every scattering lengths, and b) in the defocusing, weakly interacting case, for any masses.
Citation: Benedetta Noris, Hugo Tavares, Gianmaria Verzini. Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6085-6112. doi: 10.3934/dcds.2015.35.6085
References:
[1]

A. Aftalion, B. Noris and C. Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation,, Communications in Mathematical Physics, 336 (2015), 509.  doi: 10.1007/s00220-014-2281-9.  Google Scholar

[2]

S. Alama, L. Bronsard and P. Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model,, J. Funct. Anal., 256 (2009), 1118.  doi: 10.1016/j.jfa.2008.10.021.  Google Scholar

[3]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces,, Ann. Mat. Pura Appl. (4), 93 (1972), 231.  doi: 10.1007/BF02412022.  Google Scholar

[4]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc. (2), 75 (2007), 67.  doi: 10.1112/jlms/jdl020.  Google Scholar

[5]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis,, Cambridge Studies in Advanced Mathematics, (1993).   Google Scholar

[6]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Calc. Var. Partial Differential Equations, 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[7]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[8]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271.  doi: 10.1007/BF01449045.  Google Scholar

[9]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[10]

S.-M. Chang, C.-S. Lin, T.-C. Lin and W.-W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341.  doi: 10.1016/j.physd.2004.06.002.  Google Scholar

[11]

Z. Chen, C.-S. Lin and W. Zou, Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations,, J. Differential Equations, 255 (2013), 4289.  doi: 10.1016/j.jde.2013.08.009.  Google Scholar

[12]

E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[13]

, DispersiveWiki project,, URL , ().   Google Scholar

[14]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[15]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[16]

N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions,, Adv. Nonlinear Stud., 14 (2014), 115.   Google Scholar

[17]

O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation,, Michigan Math. J., 41 (1994), 151.  doi: 10.1307/mmj/1029004922.  Google Scholar

[18]

T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[19]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[20]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Differential Equations, 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[21]

L. A. Maia, E. Montefusco and B. Pellacci, Orbital stability property for coupled nonlinear Schrödinger equations,, Adv. Nonlinear Stud., 10 (2010), 681.   Google Scholar

[22]

N. V. Nguyen, On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger system,, Commun. Math. Sci., 9 (2011), 997.  doi: 10.4310/CMS.2011.v9.n4.a3.  Google Scholar

[23]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system,, Adv. Differential Equations, 16 (2011), 977.   Google Scholar

[24]

B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system,, Proc. Amer. Math. Soc., 138 (2010), 1681.  doi: 10.1090/S0002-9939-10-10231-7.  Google Scholar

[25]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Convergence of minimax structures and continuation of critical points for singularly perturbed systems,, J. Eur. Math. Soc. (JEMS), 14 (2012), 1245.  doi: 10.4171/JEMS/332.  Google Scholar

[26]

B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains,, , ().   Google Scholar

[27]

B. Noris and G. Verzini, A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems,, J. Differential Equations, 254 (2013), 1529.  doi: 10.1016/j.jde.2012.11.003.  Google Scholar

[28]

M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations,, Nonlinear Anal., 26 (1996), 933.  doi: 10.1016/0362-546X(94)00340-8.  Google Scholar

[29]

J. Royo-Letelier, Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap,, Calc. Var. Partial Differential Equations, 49 (2014), 103.  doi: 10.1007/s00526-012-0571-7.  Google Scholar

[30]

J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations,, Commun. Math. Phys., 91 (1983), 313.  doi: 10.1007/BF01208779.  Google Scholar

[31]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[32]

N. Soave, On existence and phase separation of positive solutions to nonlinear elliptic systems modelling simultaneous cooperation and competition,, , ().   Google Scholar

[33]

H. Tavares and T. Weth, Existence and symmetry results for competing variational systems,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 715.  doi: 10.1007/s00030-012-0176-z.  Google Scholar

[34]

H. Tavares and S. Terracini, Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 279.  doi: 10.1016/j.anihpc.2011.10.006.  Google Scholar

[35]

S. Terracini and G. Verzini, Multipulse phases in $k$-mixtures of Bose-Einstein condensates,, Arch. Ration. Mech. Anal., 194 (2009), 717.  doi: 10.1007/s00205-008-0172-y.  Google Scholar

[36]

R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203.   Google Scholar

[37]

W. P. Ziemer, Weakly Differentiable Functions,, Graduate Texts in Mathematics, (1989).  doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

A. Aftalion, B. Noris and C. Sourdis, Thomas-Fermi approximation for coexisting two component Bose-Einstein condensates and nonexistence of vortices for small rotation,, Communications in Mathematical Physics, 336 (2015), 509.  doi: 10.1007/s00220-014-2281-9.  Google Scholar

[2]

S. Alama, L. Bronsard and P. Mironescu, On the structure of fractional degree vortices in a spinor Ginzburg-Landau model,, J. Funct. Anal., 256 (2009), 1118.  doi: 10.1016/j.jfa.2008.10.021.  Google Scholar

[3]

A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces,, Ann. Mat. Pura Appl. (4), 93 (1972), 231.  doi: 10.1007/BF02412022.  Google Scholar

[4]

A. Ambrosetti and E. Colorado, Standing waves of some coupled nonlinear Schrödinger equations,, J. Lond. Math. Soc. (2), 75 (2007), 67.  doi: 10.1112/jlms/jdl020.  Google Scholar

[5]

A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis,, Cambridge Studies in Advanced Mathematics, (1993).   Google Scholar

[6]

T. Bartsch, N. Dancer and Z.-Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Calc. Var. Partial Differential Equations, 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[7]

T. Bartsch, Z.-Q. Wang and J. Wei, Bound states for a coupled Schrödinger system,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[8]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271.  doi: 10.1007/BF01449045.  Google Scholar

[9]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003).   Google Scholar

[10]

S.-M. Chang, C.-S. Lin, T.-C. Lin and W.-W. Lin, Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates,, Phys. D, 196 (2004), 341.  doi: 10.1016/j.physd.2004.06.002.  Google Scholar

[11]

Z. Chen, C.-S. Lin and W. Zou, Multiple sign-changing and semi-nodal solutions for coupled Schrödinger equations,, J. Differential Equations, 255 (2013), 4289.  doi: 10.1016/j.jde.2013.08.009.  Google Scholar

[12]

E. N. Dancer, J. Wei and T. Weth, A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 953.  doi: 10.1016/j.anihpc.2010.01.009.  Google Scholar

[13]

, DispersiveWiki project,, URL , ().   Google Scholar

[14]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. I,, J. Funct. Anal., 74 (1987), 160.  doi: 10.1016/0022-1236(87)90044-9.  Google Scholar

[15]

M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry. II,, J. Funct. Anal., 94 (1990), 308.  doi: 10.1016/0022-1236(90)90016-E.  Google Scholar

[16]

N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions,, Adv. Nonlinear Stud., 14 (2014), 115.   Google Scholar

[17]

O. Kavian and F. B. Weissler, Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation,, Michigan Math. J., 41 (1994), 151.  doi: 10.1307/mmj/1029004922.  Google Scholar

[18]

T.-C. Lin and J. Wei, Ground state of $N$ coupled nonlinear Schrödinger equations in $R^n$, $n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[19]

Z. Liu and Z.-Q. Wang, Multiple bound states of nonlinear Schrödinger systems,, Comm. Math. Phys., 282 (2008), 721.  doi: 10.1007/s00220-008-0546-x.  Google Scholar

[20]

L. A. Maia, E. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system,, J. Differential Equations, 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[21]

L. A. Maia, E. Montefusco and B. Pellacci, Orbital stability property for coupled nonlinear Schrödinger equations,, Adv. Nonlinear Stud., 10 (2010), 681.   Google Scholar

[22]

N. V. Nguyen, On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger system,, Commun. Math. Sci., 9 (2011), 997.  doi: 10.4310/CMS.2011.v9.n4.a3.  Google Scholar

[23]

N. V. Nguyen and Z.-Q. Wang, Orbital stability of solitary waves for a nonlinear Schrödinger system,, Adv. Differential Equations, 16 (2011), 977.   Google Scholar

[24]

B. Noris and M. Ramos, Existence and bounds of positive solutions for a nonlinear Schrödinger system,, Proc. Amer. Math. Soc., 138 (2010), 1681.  doi: 10.1090/S0002-9939-10-10231-7.  Google Scholar

[25]

B. Noris, H. Tavares, S. Terracini and G. Verzini, Convergence of minimax structures and continuation of critical points for singularly perturbed systems,, J. Eur. Math. Soc. (JEMS), 14 (2012), 1245.  doi: 10.4171/JEMS/332.  Google Scholar

[26]

B. Noris, H. Tavares and G. Verzini, Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains,, , ().   Google Scholar

[27]

B. Noris and G. Verzini, A remark on natural constraints in variational methods and an application to superlinear Schrödinger systems,, J. Differential Equations, 254 (2013), 1529.  doi: 10.1016/j.jde.2012.11.003.  Google Scholar

[28]

M. Ohta, Stability of solitary waves for coupled nonlinear Schrödinger equations,, Nonlinear Anal., 26 (1996), 933.  doi: 10.1016/0362-546X(94)00340-8.  Google Scholar

[29]

J. Royo-Letelier, Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap,, Calc. Var. Partial Differential Equations, 49 (2014), 103.  doi: 10.1007/s00526-012-0571-7.  Google Scholar

[30]

J. Shatah, Stable standing waves of nonlinear Klein-Gordon equations,, Commun. Math. Phys., 91 (1983), 313.  doi: 10.1007/BF01208779.  Google Scholar

[31]

B. Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $\mathbbR^n$,, Comm. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[32]

N. Soave, On existence and phase separation of positive solutions to nonlinear elliptic systems modelling simultaneous cooperation and competition,, , ().   Google Scholar

[33]

H. Tavares and T. Weth, Existence and symmetry results for competing variational systems,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 715.  doi: 10.1007/s00030-012-0176-z.  Google Scholar

[34]

H. Tavares and S. Terracini, Sign-changing solutions of competition-diffusion elliptic systems and optimal partition problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 279.  doi: 10.1016/j.anihpc.2011.10.006.  Google Scholar

[35]

S. Terracini and G. Verzini, Multipulse phases in $k$-mixtures of Bose-Einstein condensates,, Arch. Ration. Mech. Anal., 194 (2009), 717.  doi: 10.1007/s00205-008-0172-y.  Google Scholar

[36]

R. Tian and Z.-Q. Wang, Multiple solitary wave solutions of nonlinear Schrödinger systems,, Topol. Methods Nonlinear Anal., 37 (2011), 203.   Google Scholar

[37]

W. P. Ziemer, Weakly Differentiable Functions,, Graduate Texts in Mathematics, (1989).  doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[2]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[3]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[4]

Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028

[5]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[6]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[7]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[8]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[9]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[10]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[11]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[12]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[13]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[14]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[15]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[16]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[17]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[18]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[19]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[20]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (16)

[Back to Top]