-
Previous Article
Complexity and regularity of maximal energy domains for the wave equation with fixed initial data
- DCDS Home
- This Issue
-
Next Article
Stable solitary waves with prescribed $L^2$-mass for the cubic Schrödinger system with trapping potentials
Full characterization of optimal transport plans for concave costs
1. | Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, 91405 Orsay cedex, France |
2. | Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, 91405 Orsay cedex |
3. | Cambridge Centre for Analysis, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom |
References:
[1] |
G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in $\mathbbR^n$,, Math. Z., 230 (1999), 259.
doi: 10.1007/PL00004691. |
[2] |
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,, Communications on Pure and Applied Mathematics, 44 (1991), 375.
doi: 10.1002/cpa.3160440402. |
[3] |
T. Champion and L. De Pascale, The Monge problem in $R^d$,, Duke Math. J., 157 (2011), 551.
doi: 10.1215/00127094-1272939. |
[4] |
T. Champion and L. De Pascale, On the twist condition and $c$-monotone transport plans,, Discr. Cont. Dyn. Syst. Ser. A, 34 (2014), 1339.
|
[5] |
T. Champion, L. De Pascale and P. Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps,, SIAM J. of Mathematical Analysis, 40 (2008), 1.
doi: 10.1137/07069938X. |
[6] |
J. Delon, J. Salomon and A. Sobolevskii, Local matching indicators for transport problems with concave costs,, SIAM J. Disc. Math., 26 (2012), 801.
doi: 10.1137/110823304. |
[7] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992).
|
[8] |
H. Federer, Geometric Measure Theory,, Classics in Mathematics, (1996).
doi: 10.1007/978-3-642-62010-2. |
[9] |
W. Gangbo and R. McCann, The geometry of optimal transportation,, Acta Math., 177 (1996), 113.
doi: 10.1007/BF02392620. |
[10] |
L. V. Kantorovich, On the translocation of masses,, C. R. (Dokl.) Acad. Sci. URSS, 37 (1942), 199.
|
[11] |
L. V. Kantorovich, On a problem of Monge (Russian),, Uspekhi Mat. Nauk., 3 (1948), 225. Google Scholar |
[12] |
X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem,, Arch. Ration. Mech. Anal., 177 (2005), 151.
doi: 10.1007/s00205-005-0362-9. |
[13] |
G. Monge, Mémoire sur la théorie des Déblais et des Remblais (French),, Histoire de l'Académie des Sciences de Paris, (1781). Google Scholar |
[14] |
A. Pratelli, On the sufficiency of c-cyclical monotonicity for optimality of transport plans,, Math. Z., 258 (2008), 677.
doi: 10.1007/s00209-007-0191-7. |
[15] |
C. Villani, Topics in Optimal Transportation,, Graduate Studies in Mathematics, (2003).
|
show all references
References:
[1] |
G. Alberti and L. Ambrosio, A geometrical approach to monotone functions in $\mathbbR^n$,, Math. Z., 230 (1999), 259.
doi: 10.1007/PL00004691. |
[2] |
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions,, Communications on Pure and Applied Mathematics, 44 (1991), 375.
doi: 10.1002/cpa.3160440402. |
[3] |
T. Champion and L. De Pascale, The Monge problem in $R^d$,, Duke Math. J., 157 (2011), 551.
doi: 10.1215/00127094-1272939. |
[4] |
T. Champion and L. De Pascale, On the twist condition and $c$-monotone transport plans,, Discr. Cont. Dyn. Syst. Ser. A, 34 (2014), 1339.
|
[5] |
T. Champion, L. De Pascale and P. Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps,, SIAM J. of Mathematical Analysis, 40 (2008), 1.
doi: 10.1137/07069938X. |
[6] |
J. Delon, J. Salomon and A. Sobolevskii, Local matching indicators for transport problems with concave costs,, SIAM J. Disc. Math., 26 (2012), 801.
doi: 10.1137/110823304. |
[7] |
L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions,, Studies in Advanced Mathematics, (1992).
|
[8] |
H. Federer, Geometric Measure Theory,, Classics in Mathematics, (1996).
doi: 10.1007/978-3-642-62010-2. |
[9] |
W. Gangbo and R. McCann, The geometry of optimal transportation,, Acta Math., 177 (1996), 113.
doi: 10.1007/BF02392620. |
[10] |
L. V. Kantorovich, On the translocation of masses,, C. R. (Dokl.) Acad. Sci. URSS, 37 (1942), 199.
|
[11] |
L. V. Kantorovich, On a problem of Monge (Russian),, Uspekhi Mat. Nauk., 3 (1948), 225. Google Scholar |
[12] |
X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem,, Arch. Ration. Mech. Anal., 177 (2005), 151.
doi: 10.1007/s00205-005-0362-9. |
[13] |
G. Monge, Mémoire sur la théorie des Déblais et des Remblais (French),, Histoire de l'Académie des Sciences de Paris, (1781). Google Scholar |
[14] |
A. Pratelli, On the sufficiency of c-cyclical monotonicity for optimality of transport plans,, Math. Z., 258 (2008), 677.
doi: 10.1007/s00209-007-0191-7. |
[15] |
C. Villani, Topics in Optimal Transportation,, Graduate Studies in Mathematics, (2003).
|
[1] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[2] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[3] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[4] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[5] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[6] |
Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021010 |
[7] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[8] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[9] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[10] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[11] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[12] |
Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2020159 |
[13] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[14] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[15] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[16] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[17] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[18] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[19] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[20] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]