December  2015, 35(12): 6155-6163. doi: 10.3934/dcds.2015.35.6155

A note on higher regularity boundary Harnack inequality

1. 

Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York, NY 10027, United States

2. 

Department of Mathematics, Columbia University, New York, NY 10027, United States

Received  March 2014 Published  May 2015

We show that the quotient of a harmonic function and a positive harmonic function, both vanishing on the boundary of a $C^{k,\alpha}$ domain is of class $C^{k,\alpha}$ up to the boundary.
Citation: Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155
References:
[1]

R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle,, Duke Math. J., 64 (1991), 195.  doi: 10.1215/S0012-7094-91-06408-2.  Google Scholar

[2]

L. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[3]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form,, Indiana Math. J., 30 (1981), 621.  doi: 10.1512/iumj.1981.30.30049.  Google Scholar

[4]

D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries,, submitted, (2014).   Google Scholar

[5]

F. Ferrari, On boundary behavior of harmonic functions in Hölder domains,, J. Fourier Anal. Appl., 4 (1998), 447.  doi: 10.1007/BF02498219.  Google Scholar

[6]

R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions,, Trans. Amer. Math. Soc., 132 (1968), 307.  doi: 10.1090/S0002-9947-1968-0226044-7.  Google Scholar

[7]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains,, Adv. Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[8]

D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems,, J. Analyse Math., 34 (1978), 86.  doi: 10.1007/BF02790009.  Google Scholar

show all references

References:
[1]

R. Bañuelos, R. F. Bass and K. Burdzy, Hölder domains and the boundary Harnack principle,, Duke Math. J., 64 (1991), 195.  doi: 10.1215/S0012-7094-91-06408-2.  Google Scholar

[2]

L. Caffarelli, The obstacle problem revisited,, J. Fourier Anal. Appl., 4 (1998), 383.  doi: 10.1007/BF02498216.  Google Scholar

[3]

L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of non-negative solutions of elliptic operators in divergence form,, Indiana Math. J., 30 (1981), 621.  doi: 10.1512/iumj.1981.30.30049.  Google Scholar

[4]

D. De Silva and O. Savin, $C^\infty$ regularity of certain thin free boundaries,, submitted, (2014).   Google Scholar

[5]

F. Ferrari, On boundary behavior of harmonic functions in Hölder domains,, J. Fourier Anal. Appl., 4 (1998), 447.  doi: 10.1007/BF02498219.  Google Scholar

[6]

R. A. Hunt and R. L. Wheeden, On the boundary values of harmonic functions,, Trans. Amer. Math. Soc., 132 (1968), 307.  doi: 10.1090/S0002-9947-1968-0226044-7.  Google Scholar

[7]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains,, Adv. Math., 46 (1982), 80.  doi: 10.1016/0001-8708(82)90055-X.  Google Scholar

[8]

D. Kinderlehrer, L. Nirenberg and J. Spruck, Regularity in elliptic free boundary problems,, J. Analyse Math., 34 (1978), 86.  doi: 10.1007/BF02790009.  Google Scholar

[1]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[2]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[3]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[4]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[5]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[6]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[7]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[8]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[9]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[10]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[11]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[12]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[13]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[14]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[15]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[16]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[17]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[18]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[19]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[20]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]