December  2015, 35(12): 6165-6179. doi: 10.3934/dcds.2015.35.6165

The Hessian Sobolev inequality and its extensions

1. 

Department of Mathematics, University of Missouri, Columbia, MO 65211, United States

Received  February 2014 Published  May 2015

The Hessian Sobolev inequality of X.-J. Wang, and the Hessian Poincaré inequalities of Trudinger and Wang are fundamental to differential and conformal geometry, and geometric PDE. These remarkable inequalities were originally established via gradient flow methods. In this paper, direct elliptic proofs are given, and extensions to trace inequalities with general measures in place of Lebesgue measure are obtained. The new techniques rely on global estimates of solutions to Hessian equations in terms of Wolff's potentials, and duality arguments making use of a non-commutative inner product on the cone of $k$-convex functions.
Citation: Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Springer, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155 (1985), 261.  doi: 10.1007/BF02392544.  Google Scholar

[3]

C. Fefferman, The uncertainty principle,, Bull. Amer. Math. Soc., 9 (1983), 129.  doi: 10.1090/S0273-0979-1983-15154-6.  Google Scholar

[4]

F. Ferrari, B. Franchi and I. Verbitsky, Hessian inequalities and the fractional Laplacian,, J. reine angew. Math., 667 (2012), 133.  doi: 10.1515/CRELLE.2011.116.  Google Scholar

[5]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities,, J. Diff. Eqs., 253 (2012), 244.  doi: 10.1016/j.jde.2012.03.024.  Google Scholar

[6]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161.  doi: 10.5802/aif.944.  Google Scholar

[7]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[8]

D. A. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[9]

V. G. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations,, 2nd augmented ed., (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[10]

N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[11]

N. C. Phuc and I. E. Verbitsky, Singular quasilinear and Hessian equations and inequalities,, J. Funct. Anal., 256 (2009), 1875.  doi: 10.1016/j.jfa.2009.01.012.  Google Scholar

[12]

W. Sheng, N. S. Trudinger and X. J. Wang, The Yamabe problem for higher order curvatures,, J. Diff. Geom., 77 (2007), 515.   Google Scholar

[13]

N. S. Trudinger, On the Dirichlet problem for Hessian equations,, Acta Math., 175 (1995), 151.  doi: 10.1007/BF02393303.  Google Scholar

[14]

N. S. Trudinger, On new isoperimetric inequalities and symmetrization,, J. reine angew. Math., 488 (1997), 203.  doi: 10.1515/crll.1997.488.203.  Google Scholar

[15]

N. S. Trudinger, Weak solutions of Hessian equations,, Comm. PDE, 22 (1997), 1251.  doi: 10.1080/03605309708821299.  Google Scholar

[16]

N. S. Trudinger and X. J. Wang, A Poincaré type inequality for Hessian integrals,, Calc. Var. PDE, 6 (1998), 315.  doi: 10.1007/s005260050093.  Google Scholar

[17]

N. S. Trudinger and X. J. Wang, Hessian measures I,, Topol. Meth. Nonlin. Anal., 10 (1997), 225.   Google Scholar

[18]

N. S. Trudinger and X. J. Wang, Hessian measures II,, Ann. Math., 150 (1999), 579.  doi: 10.2307/121089.  Google Scholar

[19]

N. S. Trudinger and X. J. Wang, On the weak continuity of elliptic operators and applications to potential theory,, Amer. J. Math., 124 (2002), 369.  doi: 10.1353/ajm.2002.0012.  Google Scholar

[20]

K. Tso, On symmetrization and Hessian equations,, J. Anal. Math., 52 (1989), 94.  doi: 10.1007/BF02820473.  Google Scholar

[21]

K. Tso, On a real Monge-Ampère functional,, Invent. Math., 101 (1990), 425.  doi: 10.1007/BF01231510.  Google Scholar

[22]

I. E. Verbitsky, Nonlinear potentials and trace inequalities,, in The Maz'ya Anniversary Collection, 110 (1999), 323.  doi: 10.1007/978-3-0348-8672-7_18.  Google Scholar

[23]

I. E. Verbitsky, Hessian Sobolev and Poincaré inequalities,, Oberwolfach Reports, 36 (2011), 2077.  doi: 10.4171/OWR/2011/36.  Google Scholar

[24]

X. J. Wang, A class of fully nonlinear elliptic equations and related functionals,, Indiana Univ. Math. J., 43 (1994), 25.  doi: 10.1512/iumj.1994.43.43002.  Google Scholar

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, Springer, (1996).  doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian,, Acta Math., 155 (1985), 261.  doi: 10.1007/BF02392544.  Google Scholar

[3]

C. Fefferman, The uncertainty principle,, Bull. Amer. Math. Soc., 9 (1983), 129.  doi: 10.1090/S0273-0979-1983-15154-6.  Google Scholar

[4]

F. Ferrari, B. Franchi and I. Verbitsky, Hessian inequalities and the fractional Laplacian,, J. reine angew. Math., 667 (2012), 133.  doi: 10.1515/CRELLE.2011.116.  Google Scholar

[5]

F. Ferrari and I. Verbitsky, Radial fractional Laplace operators and Hessian inequalities,, J. Diff. Eqs., 253 (2012), 244.  doi: 10.1016/j.jde.2012.03.024.  Google Scholar

[6]

L. I. Hedberg and T. Wolff, Thin sets in nonlinear potential theory,, Ann. Inst. Fourier (Grenoble), 33 (1983), 161.  doi: 10.5802/aif.944.  Google Scholar

[7]

T. Kilpeläinen and J. Malý, The Wiener test and potential estimates for quasilinear elliptic equations,, Acta Math., 172 (1994), 137.  doi: 10.1007/BF02392793.  Google Scholar

[8]

D. A. Labutin, Potential estimates for a class of fully nonlinear elliptic equations,, Duke Math. J., 111 (2002), 1.  doi: 10.1215/S0012-7094-02-11111-9.  Google Scholar

[9]

V. G. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations,, 2nd augmented ed., (2011).  doi: 10.1007/978-3-642-15564-2.  Google Scholar

[10]

N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,, Ann. Math., 168 (2008), 859.  doi: 10.4007/annals.2008.168.859.  Google Scholar

[11]

N. C. Phuc and I. E. Verbitsky, Singular quasilinear and Hessian equations and inequalities,, J. Funct. Anal., 256 (2009), 1875.  doi: 10.1016/j.jfa.2009.01.012.  Google Scholar

[12]

W. Sheng, N. S. Trudinger and X. J. Wang, The Yamabe problem for higher order curvatures,, J. Diff. Geom., 77 (2007), 515.   Google Scholar

[13]

N. S. Trudinger, On the Dirichlet problem for Hessian equations,, Acta Math., 175 (1995), 151.  doi: 10.1007/BF02393303.  Google Scholar

[14]

N. S. Trudinger, On new isoperimetric inequalities and symmetrization,, J. reine angew. Math., 488 (1997), 203.  doi: 10.1515/crll.1997.488.203.  Google Scholar

[15]

N. S. Trudinger, Weak solutions of Hessian equations,, Comm. PDE, 22 (1997), 1251.  doi: 10.1080/03605309708821299.  Google Scholar

[16]

N. S. Trudinger and X. J. Wang, A Poincaré type inequality for Hessian integrals,, Calc. Var. PDE, 6 (1998), 315.  doi: 10.1007/s005260050093.  Google Scholar

[17]

N. S. Trudinger and X. J. Wang, Hessian measures I,, Topol. Meth. Nonlin. Anal., 10 (1997), 225.   Google Scholar

[18]

N. S. Trudinger and X. J. Wang, Hessian measures II,, Ann. Math., 150 (1999), 579.  doi: 10.2307/121089.  Google Scholar

[19]

N. S. Trudinger and X. J. Wang, On the weak continuity of elliptic operators and applications to potential theory,, Amer. J. Math., 124 (2002), 369.  doi: 10.1353/ajm.2002.0012.  Google Scholar

[20]

K. Tso, On symmetrization and Hessian equations,, J. Anal. Math., 52 (1989), 94.  doi: 10.1007/BF02820473.  Google Scholar

[21]

K. Tso, On a real Monge-Ampère functional,, Invent. Math., 101 (1990), 425.  doi: 10.1007/BF01231510.  Google Scholar

[22]

I. E. Verbitsky, Nonlinear potentials and trace inequalities,, in The Maz'ya Anniversary Collection, 110 (1999), 323.  doi: 10.1007/978-3-0348-8672-7_18.  Google Scholar

[23]

I. E. Verbitsky, Hessian Sobolev and Poincaré inequalities,, Oberwolfach Reports, 36 (2011), 2077.  doi: 10.4171/OWR/2011/36.  Google Scholar

[24]

X. J. Wang, A class of fully nonlinear elliptic equations and related functionals,, Indiana Univ. Math. J., 43 (1994), 25.  doi: 10.1512/iumj.1994.43.43002.  Google Scholar

[1]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[2]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[3]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[4]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[5]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[6]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[9]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[11]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[12]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]