January  2015, 35(1): 73-98. doi: 10.3934/dcds.2015.35.73

On the modeling of moving populations through set evolution equations

1. 

INdAM Unit, University of Brescia, Via Branze 38, 25123 Brescia, Italy

2. 

RheinMain University of Applied Sciences, Kurt-Schumacher-Ring 18, 65197 Wiesbaden, Germany

3. 

Institute for System Dynamics and Control Theory, 134 Lermontova st., 664033 Irkutsk, Russian Federation

Received  December 2013 Revised  March 2014 Published  August 2014

We introduce a class of set evolution equations that can be used to describe population's movements as well as various instances of individual-population interactions. Optimal control/management problems can be formalized and tackled in this framework. A rigorous analytical structure is established and the basic well posedness results are obtained. Several examples show possible applications and their numerical integrations display possible qualitative behaviors of solutions.
Citation: Rinaldo M. Colombo, Thomas Lorenz, Nikolay I. Pogodaev. On the modeling of moving populations through set evolution equations. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 73-98. doi: 10.3934/dcds.2015.35.73
References:
[1]

O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces Free Bound., 7 (2005), 415-434. doi: 10.4171/IFB/131.

[2]

J.-P. Aubin, Mutational equations in metric spaces, Set-Valued Anal., 1 (1993), 3-46. doi: 10.1007/BF01039289.

[3]

J.-P. Aubin, Mutational and Morphological Analysis, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1576-9.

[4]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.

[5]

J.-P. Aubin and H. Frankowska, Set-valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhäuser Boston Inc., Boston, MA, 1990.

[6]

G. Beer, Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications, 268, Kluwer Academic Publishers Group, Dordrecht, 1993.

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions, Computing, 81 (2007), 91-106. doi: 10.1007/s00607-007-0240-4.

[8]

A. Bressan and D. Zhang, Control problems for a class of set valued evolutions, Set-Valued Var. Anal., 20 (2012), 581-601. doi: 10.1007/s11228-012-0204-5.

[9]

P. Cannarsa and P. Cardaliaguet, Perimeter estimates for reachable sets of control systems, J. Convex Anal., 13 (2006), 253-267.

[10]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var., 12 (2006), 350-370. doi: 10.1051/cocv:2006002.

[11]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston Inc., Boston, MA, 2004.

[12]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws, J. Differential Equations, 252 (2012), 3245-3277. doi: 10.1016/j.jde.2011.11.003.

[13]

G. Colombo and K. T. Nguyen, On the structure of the minimum time function, SIAM J. Control Optim., 48 (2010), 4776-4814. doi: 10.1137/090774549.

[14]

R. M. Colombo and G. Guerra, Balance laws as quasidifferential equations in metric spaces, in Hyperbolic Problems: Theory, Numerics and Applications (eds. A. E. T. Eitan Tadmor and Jian-Guo Liu), Proc. Sympos. Appl. Math. Amer. Math. Soc., 67, Providence, RI, 2009, 527-536. doi: 10.1090/psapm/067.2/2605248.

[15]

R. M. Colombo and G. Guerra, Differential equations in metric spaces with applications, Discrete Contin. Dyn. Syst., 23 (2009), 733-753. doi: 10.3934/dcds.2009.23.733.

[16]

R. M. Colombo and M. Lécureux-Mercier, An analytical framework to describe the interactions between individuals and a continuum, J. Nonlinear Sci., 22 (2012), 39-61. doi: 10.1007/s00332-011-9107-0.

[17]

R. M. Colombo, T. Lorenz and N. Pogodaev, Fixed grid method for a class of set evolution equations,, in preparation., (). 

[18]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770. doi: 10.1137/110854321.

[19]

R. M. Colombo and N. Pogodaev, On the control of moving sets: Positive and negative confinement results, SIAM J. Control Optim., 51 (2013), 380-401. doi: 10.1137/12087791X.

[20]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization, Second edition, {Advances in Design and Control}, 22, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9780898719826.

[21]

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.

[22]

M. Giaquinta and G. Modica, Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables, Springer, 2011.

[23]

J. Grimm and W. Grimm, Deutsche Sagen, Second edition, Nicolaische Verlagsbuchhandlung, Berlin, 1865.

[24]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients, J. Differential Equations, 248 (2010), 2703-2735. doi: 10.1016/j.jde.2010.02.010.

[25]

T. Lorenz, Boundary regularity of reachable sets of control systems, Systems Control Lett., 54 (2005), 919-924. doi: 10.1016/j.sysconle.2005.02.006.

[26]

T. Lorenz, Morphological control problems with state constraints, SIAM J. Control Optim., 48 (2010), 5510-5546. doi: 10.1137/090752183.

[27]

T. Lorenz, Mutational Analysis. A Joint Framework for Cauchy Problems in and Beyond Vector Spaces, Lecture Notes in Mathematics, 1996, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12471-6.

[28]

S. Maniglia, Probabilistic representation and uniqueness results for measure-valued solutions of transport equations, J. Math. Pures Appl. (9), 87 (2007), 601-626. doi: 10.1016/j.matpur.2007.04.001.

[29]

C. Nour, R. J. Stern and J. Takche, The union of uniform closed balls conjecture, Control Cybernet., 38 (2009), 1525-1534.

[30]

C. Nour, R. J. Stern and J. Takche, Validity of the union of uniform closed balls conjecture, J. Convex Anal., 18 (2011), 589-600.

[31]

C. Nour and J. Takche, On the union of closed balls property, J. Optim. Theory Appl., 155 (2012), 376-389. doi: 10.1007/s10957-012-0068-8.

[32]

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source, arXiv:1206.3219v1, 2012. doi: 10.1007/s00205-013-0669-x.

[33]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y.

show all references

References:
[1]

O. Alvarez, P. Cardaliaguet and R. Monneau, Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces Free Bound., 7 (2005), 415-434. doi: 10.4171/IFB/131.

[2]

J.-P. Aubin, Mutational equations in metric spaces, Set-Valued Anal., 1 (1993), 3-46. doi: 10.1007/BF01039289.

[3]

J.-P. Aubin, Mutational and Morphological Analysis, Systems & Control: Foundations & Applications, Birkhäuser Boston Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1576-9.

[4]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984. doi: 10.1007/978-3-642-69512-4.

[5]

J.-P. Aubin and H. Frankowska, Set-valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhäuser Boston Inc., Boston, MA, 1990.

[6]

G. Beer, Topologies on Closed and Closed Convex Sets, Mathematics and Its Applications, 268, Kluwer Academic Publishers Group, Dordrecht, 1993.

[7]

W.-J. Beyn and J. Rieger, Numerical fixed grid methods for differential inclusions, Computing, 81 (2007), 91-106. doi: 10.1007/s00607-007-0240-4.

[8]

A. Bressan and D. Zhang, Control problems for a class of set valued evolutions, Set-Valued Var. Anal., 20 (2012), 581-601. doi: 10.1007/s11228-012-0204-5.

[9]

P. Cannarsa and P. Cardaliaguet, Perimeter estimates for reachable sets of control systems, J. Convex Anal., 13 (2006), 253-267.

[10]

P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems, ESAIM Control Optim. Calc. Var., 12 (2006), 350-370. doi: 10.1051/cocv:2006002.

[11]

P. Cannarsa and C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston Inc., Boston, MA, 2004.

[12]

J. A. Carrillo, R. M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws, J. Differential Equations, 252 (2012), 3245-3277. doi: 10.1016/j.jde.2011.11.003.

[13]

G. Colombo and K. T. Nguyen, On the structure of the minimum time function, SIAM J. Control Optim., 48 (2010), 4776-4814. doi: 10.1137/090774549.

[14]

R. M. Colombo and G. Guerra, Balance laws as quasidifferential equations in metric spaces, in Hyperbolic Problems: Theory, Numerics and Applications (eds. A. E. T. Eitan Tadmor and Jian-Guo Liu), Proc. Sympos. Appl. Math. Amer. Math. Soc., 67, Providence, RI, 2009, 527-536. doi: 10.1090/psapm/067.2/2605248.

[15]

R. M. Colombo and G. Guerra, Differential equations in metric spaces with applications, Discrete Contin. Dyn. Syst., 23 (2009), 733-753. doi: 10.3934/dcds.2009.23.733.

[16]

R. M. Colombo and M. Lécureux-Mercier, An analytical framework to describe the interactions between individuals and a continuum, J. Nonlinear Sci., 22 (2012), 39-61. doi: 10.1007/s00332-011-9107-0.

[17]

R. M. Colombo, T. Lorenz and N. Pogodaev, Fixed grid method for a class of set evolution equations,, in preparation., (). 

[18]

R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770. doi: 10.1137/110854321.

[19]

R. M. Colombo and N. Pogodaev, On the control of moving sets: Positive and negative confinement results, SIAM J. Control Optim., 51 (2013), 380-401. doi: 10.1137/12087791X.

[20]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries. Metrics, Analysis, Differential Calculus, and Optimization, Second edition, {Advances in Design and Control}, 22, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. doi: 10.1137/1.9780898719826.

[21]

H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969.

[22]

M. Giaquinta and G. Modica, Mathematical Analysis: Foundations and Advanced Techniques for Functions of Several Variables, Springer, 2011.

[23]

J. Grimm and W. Grimm, Deutsche Sagen, Second edition, Nicolaische Verlagsbuchhandlung, Berlin, 1865.

[24]

P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients, J. Differential Equations, 248 (2010), 2703-2735. doi: 10.1016/j.jde.2010.02.010.

[25]

T. Lorenz, Boundary regularity of reachable sets of control systems, Systems Control Lett., 54 (2005), 919-924. doi: 10.1016/j.sysconle.2005.02.006.

[26]

T. Lorenz, Morphological control problems with state constraints, SIAM J. Control Optim., 48 (2010), 5510-5546. doi: 10.1137/090752183.

[27]

T. Lorenz, Mutational Analysis. A Joint Framework for Cauchy Problems in and Beyond Vector Spaces, Lecture Notes in Mathematics, 1996, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12471-6.

[28]

S. Maniglia, Probabilistic representation and uniqueness results for measure-valued solutions of transport equations, J. Math. Pures Appl. (9), 87 (2007), 601-626. doi: 10.1016/j.matpur.2007.04.001.

[29]

C. Nour, R. J. Stern and J. Takche, The union of uniform closed balls conjecture, Control Cybernet., 38 (2009), 1525-1534.

[30]

C. Nour, R. J. Stern and J. Takche, Validity of the union of uniform closed balls conjecture, J. Convex Anal., 18 (2011), 589-600.

[31]

C. Nour and J. Takche, On the union of closed balls property, J. Optim. Theory Appl., 155 (2012), 376-389. doi: 10.1007/s10957-012-0068-8.

[32]

B. Piccoli and F. Rossi, Generalized Wasserstein distance and its application to transport equations with source, arXiv:1206.3219v1, 2012. doi: 10.1007/s00205-013-0669-x.

[33]

B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow, Arch. Ration. Mech. Anal., 199 (2011), 707-738. doi: 10.1007/s00205-010-0366-y.

[1]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations and Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[2]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations and Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[3]

Rémi Carles, Clotilde Fermanian-Kammerer, Norbert J. Mauser, Hans Peter Stimming. On the time evolution of Wigner measures for Schrödinger equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 559-585. doi: 10.3934/cpaa.2009.8.559

[4]

Yannis Petrohilos-Andrianos, Anastasios Xepapadeas. On the evolution of compliance and regulation with tax evading agents. Journal of Dynamics and Games, 2016, 3 (3) : 231-260. doi: 10.3934/jdg.2016013

[5]

Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1899-1919. doi: 10.3934/dcdss.2020149

[6]

Kenneth Kuttler. Measurable solutions for elliptic and evolution inclusions. Evolution Equations and Control Theory, 2020, 9 (4) : 1041-1055. doi: 10.3934/eect.2020041

[7]

Kevin T. Andrews, Kenneth L. Kuttler, Ji Li, Meir Shillor. Measurable solutions to general evolution inclusions. Evolution Equations and Control Theory, 2020, 9 (4) : 935-960. doi: 10.3934/eect.2020055

[8]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations and Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[9]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[10]

Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2137-2150. doi: 10.3934/dcdss.2020177

[11]

Elimhan N. Mahmudov. Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2503-2520. doi: 10.3934/jimo.2019066

[12]

Janet Dyson, Rosanna Villella-Bressan, G. F. Webb. The evolution of a tumor cord cell population. Communications on Pure and Applied Analysis, 2004, 3 (3) : 331-352. doi: 10.3934/cpaa.2004.3.331

[13]

Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations and Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507

[14]

Leszek Gasiński, Nikolaos S. Papageorgiou. Periodic solutions for nonlinear nonmonotone evolution inclusions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 219-238. doi: 10.3934/dcdsb.2018015

[15]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[16]

Md. Abul Kalam Azad, Edite M.G.P. Fernandes. A modified differential evolution based solution technique for economic dispatch problems. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1017-1038. doi: 10.3934/jimo.2012.8.1017

[17]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[18]

Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287-296. doi: 10.3934/proc.2015.0287

[19]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[20]

Matheus C. Bortolan, José Manuel Uzal. Pullback attractors to impulsive evolution processes: Applications to differential equations and tube conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2791-2826. doi: 10.3934/dcds.2020150

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (8)

[Back to Top]