-
Previous Article
The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions
- DCDS Home
- This Issue
- Next Article
Polynomial loss of memory for maps of the interval with a neutral fixed point
1. | Aix Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France, France |
2. | Department of Mathematics, Michigan State University, East Lansing, MI 48824 |
3. | Department of Mathematics, University of Houston, Houston, TX 77204-3008 |
References:
[1] |
R. Aimino, Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes, Ph. D. Thesis, Université du Sud Toulon Var, (2014). |
[2] |
R. Aimino and J. Rousseau, Concentration inequalities for sequential dynamical systems of the unit interval, preprint. |
[3] |
W. Bahsoun, Ch. Bose and Y. Duan, Decay of correlation for random intermittent maps, Nonlinearity, 27 (2014), 1543-1554. arXiv:1305.6588.
doi: 10.1088/0951-7715/27/7/1543. |
[4] |
J.-P. Conze and A. Raugi, Limit theorems for sequential expanding dynamical systems on [0, 1], Ergodic theory and related fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 430 (2007), 89-121.
doi: 10.1090/conm/430/08253. |
[5] |
W. de Melo, S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993. |
[6] |
S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Relat. Fields, 128 (2004), 82-122,
doi: 10.1007/s00440-003-0300-4. |
[7] |
C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension, Mathematical Research Letters, 20 (2013), 141-161.
doi: 10.4310/MRL.2013.v20.n1.a12. |
[8] |
H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic Theory and Dynamical Systems, 24 (2004), 495-524.
doi: 10.1017/S0143385703000671. |
[9] |
C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic theory and dynamical systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett., 16 (2009), 463-475.
doi: 10.4310/MRL.2009.v16.n3.a7. |
[11] |
O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653.
doi: 10.1007/s00222-002-0248-5. |
[12] |
W. Shen and S. Van Strien, On stochastic stability of expanding circle maps with neutral fixed points, Dynamical Systems, An International Journal, 28 (2013), 423-452.
doi: 10.1080/14689367.2013.806733. |
[13] |
M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms, Nonlinearity, 24 (2011), 2991-3018.
doi: 10.1088/0951-7715/24/10/016. |
[14] |
M. Stenlund, L-S. Young and H. Zhang, Dispersing billiards with moving scatterers, Comm. Math. Phys., 322 (2013), 909-955.
doi: 10.1007/s00220-013-1746-6. |
show all references
References:
[1] |
R. Aimino, Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes, Ph. D. Thesis, Université du Sud Toulon Var, (2014). |
[2] |
R. Aimino and J. Rousseau, Concentration inequalities for sequential dynamical systems of the unit interval, preprint. |
[3] |
W. Bahsoun, Ch. Bose and Y. Duan, Decay of correlation for random intermittent maps, Nonlinearity, 27 (2014), 1543-1554. arXiv:1305.6588.
doi: 10.1088/0951-7715/27/7/1543. |
[4] |
J.-P. Conze and A. Raugi, Limit theorems for sequential expanding dynamical systems on [0, 1], Ergodic theory and related fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 430 (2007), 89-121.
doi: 10.1090/conm/430/08253. |
[5] |
W. de Melo, S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993. |
[6] |
S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Relat. Fields, 128 (2004), 82-122,
doi: 10.1007/s00440-003-0300-4. |
[7] |
C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension, Mathematical Research Letters, 20 (2013), 141-161.
doi: 10.4310/MRL.2013.v20.n1.a12. |
[8] |
H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic Theory and Dynamical Systems, 24 (2004), 495-524.
doi: 10.1017/S0143385703000671. |
[9] |
C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic theory and dynamical systems, 19 (1999), 671-685.
doi: 10.1017/S0143385799133856. |
[10] |
W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett., 16 (2009), 463-475.
doi: 10.4310/MRL.2009.v16.n3.a7. |
[11] |
O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653.
doi: 10.1007/s00222-002-0248-5. |
[12] |
W. Shen and S. Van Strien, On stochastic stability of expanding circle maps with neutral fixed points, Dynamical Systems, An International Journal, 28 (2013), 423-452.
doi: 10.1080/14689367.2013.806733. |
[13] |
M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms, Nonlinearity, 24 (2011), 2991-3018.
doi: 10.1088/0951-7715/24/10/016. |
[14] |
M. Stenlund, L-S. Young and H. Zhang, Dispersing billiards with moving scatterers, Comm. Math. Phys., 322 (2013), 909-955.
doi: 10.1007/s00220-013-1746-6. |
[1] |
Yaofeng Su. Almost surely invariance principle for non-stationary and random intermittent dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6585-6597. doi: 10.3934/dcds.2019286 |
[2] |
Fredi Tröltzsch, Alberto Valli. Optimal voltage control of non-stationary eddy current problems. Mathematical Control and Related Fields, 2018, 8 (1) : 35-56. doi: 10.3934/mcrf.2018002 |
[3] |
Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17 |
[4] |
Anushaya Mohapatra, William Ott. Memory loss for nonequilibrium open dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3747-3759. doi: 10.3934/dcds.2014.34.3747 |
[5] |
Kaïs Ammari, Thomas Duyckaerts, Armen Shirikyan. Local feedback stabilisation to a non-stationary solution for a damped non-linear wave equation. Mathematical Control and Related Fields, 2016, 6 (1) : 1-25. doi: 10.3934/mcrf.2016.6.1 |
[6] |
Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41 |
[7] |
Sherif I. Ammar, Alexander Zeifman, Yacov Satin, Ksenia Kiseleva, Victor Korolev. On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1057-1068. doi: 10.3934/jimo.2020011 |
[8] |
Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189 |
[9] |
Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743 |
[10] |
Tiphaine Jézéquel, Patrick Bernard, Eric Lombardi. Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3153-3225. doi: 10.3934/dcds.2016.36.3153 |
[11] |
Nicholas Long. Fixed point shifts of inert involutions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297 |
[12] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4051-4059. doi: 10.3934/dcds.2022045 |
[13] |
Rafael Obaya, Víctor M. Villarragut. Direct exponential ordering for neutral compartmental systems with non-autonomous $\mathbf{D}$-operator. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 185-207. doi: 10.3934/dcdsb.2013.18.185 |
[14] |
Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017 |
[15] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[16] |
Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271 |
[17] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[18] |
Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979 |
[19] |
Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381 |
[20] |
S. Gatti, Elena Sartori. Well-posedness results for phase field systems with memory effects in the order parameter dynamics. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 705-726. doi: 10.3934/dcds.2003.9.705 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]