Advanced Search
Article Contents
Article Contents

Polynomial loss of memory for maps of the interval with a neutral fixed point

Abstract Related Papers Cited by
  • We give an example of a sequential dynamical system consisting of intermittent-type maps which exhibits loss of memory with a polynomial rate of decay. A uniform bound holds for the upper rate of memory loss. The maps may be chosen in any sequence, and the bound holds for all compositions.
    Mathematics Subject Classification: 37E05, 37A25, 37H99, 37M99.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Aimino, Vitesse de mélange et théorèmes limites pour les systèmes dynamiques aléatoires et non-autonomes, Ph. D. Thesis, Université du Sud Toulon Var, (2014).


    R. Aimino and J. Rousseau, Concentration inequalities for sequential dynamical systems of the unit interval, preprint.


    W. Bahsoun, Ch. Bose and Y. Duan, Decay of correlation for random intermittent maps, Nonlinearity, 27 (2014), 1543-1554. arXiv:1305.6588.doi: 10.1088/0951-7715/27/7/1543.


    J.-P. Conze and A. Raugi, Limit theorems for sequential expanding dynamical systems on [0, 1], Ergodic theory and related fields, Contemp. Math., Amer. Math. Soc., Providence, RI, 430 (2007), 89-121.doi: 10.1090/conm/430/08253.


    W. de Melo, S. van Strien, One-dimensional Dynamics, Springer, Berlin, 1993.


    S. Gouëzel, Central limit theorem and stable laws for intermittent maps, Probab. Theory Relat. Fields, 128 (2004), 82-122,doi: 10.1007/s00440-003-0300-4.


    C. Gupta, W. Ott and A. Török, Memory loss for time-dependent piecewise expanding systems in higher dimension, Mathematical Research Letters, 20 (2013), 141-161.doi: 10.4310/MRL.2013.v20.n1.a12.


    H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic Theory and Dynamical Systems, 24 (2004), 495-524.doi: 10.1017/S0143385703000671.


    C. Liverani, B. Saussol and S. Vaienti, A probabilistic approach to intermittency, Ergodic theory and dynamical systems, 19 (1999), 671-685.doi: 10.1017/S0143385799133856.


    W. Ott, M. Stenlund and L.-S. Young, Memory loss for time-dependent dynamical systems, Math. Res. Lett., 16 (2009), 463-475.doi: 10.4310/MRL.2009.v16.n3.a7.


    O. Sarig, Subexponential decay of correlations, Invent. Math., 150 (2002), 629-653.doi: 10.1007/s00222-002-0248-5.


    W. Shen and S. Van Strien, On stochastic stability of expanding circle maps with neutral fixed points, Dynamical Systems, An International Journal, 28 (2013), 423-452.doi: 10.1080/14689367.2013.806733.


    M. Stenlund, Non-stationary compositions of Anosov diffeomorphisms, Nonlinearity, 24 (2011), 2991-3018.doi: 10.1088/0951-7715/24/10/016.


    M. Stenlund, L-S. Young and H. Zhang, Dispersing billiards with moving scatterers, Comm. Math. Phys., 322 (2013), 909-955.doi: 10.1007/s00220-013-1746-6.

  • 加载中

Article Metrics

HTML views() PDF downloads(145) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint