Article Contents
Article Contents

# The Cauchy problem for a tenth-order thin film equation II. Oscillatory source-type and fundamental similarity solutions

• Fundamental global similarity solutions of the standard form $$u_\gamma(x,t) = t^{-\alpha_\gamma} f_\gamma(y),\,\,\mbox{with the rescaled variable}\,\,\, y= x/{t^{\beta_\gamma}}, \,\, \beta_\gamma= \frac {1-n \alpha_\gamma}{10},$$ where $\alpha_\gamma>0$ are real nonlinear eigenvalues ($\gamma$ is a multiindex in $\mathbb{R}^N$) of the tenth-order thin film equation (TFE-10) \begin{eqnarray*} \label{i1a} u_{t} = \nabla \cdot (|u|^{n} \nabla \Delta^4 u) \quad in \quad \mathbb{R}^N \times \mathbb{R}_+ \,, \quad n>0,                   (0.1) \end{eqnarray*} are studied. The present paper continues the study began in [1]. Thus, the following questions are also under scrutiny:
(I) Further study of the limit $n \to 0$, where the behaviour of finite interfaces and solutions as $y \to \infty$ are described. In particular, for $N=1$, the interfaces are shown to diverge as follows: $$|x_0(t)| \sim 10 ( \frac{1}{n}\sec ( \frac{4\pi}{9} ) )^{\frac 9{10}} t^{\frac 1{10}} \to \infty as n \to 0^+.$$
(II) For a fixed $n \in (0, \frac 98)$, oscillatory structures of solutions near interfaces.
(III) Again, for a fixed $n \in (0, \frac 98)$, global structures of some nonlinear eigenfunctions $\{f_\gamma\}_{|\gamma| \ge 0}$ by a combination of numerical and analytical methods.
Mathematics Subject Classification: 35G20, 35K65, 35K35, 37K50.

 Citation:

•  [1] P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov, The Cauchy Problem for a Tenth-order Thin Film Equation I. Bifurcation of Self-similar Oscillatory Fundamental Solutions, Mediterranean Journal of Mathematics, accepted. [2] P. Álvarez-Caudevilla, J. D. Evans and V. A. Galaktionov, Self-similar Blow-up and its Global Extension for an Unstable Tenth-Order Thin Film Equation, in preparation. [3] P. Álvarez-Caudevilla and V. A. Galaktionov, Local bifurcation-branching analysis of global and "blow-up" patterns for a fourth-order thin film equation, Nonlinear Differ. Equat. Appl., 18 (2011), 483-537.doi: 10.1007/s00030-011-0105-6. [4] P. Álvarez-Caudevilla and V. A. Galaktionov, Well-posedness of the Cauchy problem for a fourth-order thin film equation via regularization approaches, submitted. [5] F. Bernis and A. Friedman, Higher order nonlinear degenerate parabolic equations, J. Differ. Equat., 83 (1990), 179-206.doi: 10.1016/0022-0396(90)90074-Y. [6] M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Spaces, D. Reidel, Dordecht/Tokyo, 1987.doi: 10.1007/978-94-009-4586-9. [7] M. Chaves and V. A. Galaktionov, On source-type solutions and the Cauchy problem for a doubly degenerate sixth-order thin film equation. I. Local oscillatory properties, Nonlinear Anal., 72 (2010), 4030-4048.doi: 10.1016/j.na.2010.01.034. [8] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin/Tokyo, 1985.doi: 10.1007/978-3-662-00547-7. [9] Yu. V. Egorov, V. A. Galaktionov, V. A. Kondratiev and S. I. Pohozaev, Global solutions of higher-order semilinear parabolic equations in the supercritical range, Adv. Differ. Equat., 9 (2004), 1009-1038. [10] J. D. Evans, V. A. Galaktionov and J. R. King, Blow-up similarity solutions of the fourth-order unstable thin film equation, Euro. J. Appl. Math., 18 (2007), 195-231.doi: 10.1017/S0956792507006900. [11] J. D. Evans, V. A. Galaktionov and J. R. King, Source-type solutions of the fourth-order unstable thin film equation, Euro. J. Appl. Math., 18 (2007), 273-321.doi: 10.1017/S0956792507006912. [12] J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation I. Blow-up similarity solutions, Nonlinearity, 20 (2007), 1799-1841.doi: 10.1088/0951-7715/20/8/002. [13] J. D. Evans, V. A. Galaktionov and J. R. King, Unstable sixth-order thin film equation II. Global similarity patterns, Nonlinearity, 20 (2007), 1843-1881.doi: 10.1088/0951-7715/20/8/003. [14] V. A. Galaktionov, Geometric Sturmian Theory of Nonlinear Parabolic Equations and Applications, Chapman & Hall/CRC, Boca Raton, Florida, 2004.doi: 10.1201/9780203998069. [15] V. A. Galaktionov, Countable branching of similarity solutions of higher-order porous medium type equations, Adv. Differ. Equat., 13 (2008), 641-680. [16] V. A. Galaktionov, Very singular solutions for thin film equations with absorption, Studies Appl. Math., 124 (2010), 39-63 (arXiv:0109.3982).doi: 10.1111/j.1467-9590.2009.00461.x. [17] V. A. Galaktionov, E. Mitidieri and S. I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear evolution equations of parabolic, hyperbolic, and nonlinear dispersion types, In Sobolev Spaces in Mathematics. II, Appl. Anal. and Part. Differ. Equat., Series: Int. Math. Ser., V. Maz'ya Ed., Springer, New York, 9(2009), 147-197. (an earlier preprint: arXiv:0902.1425).doi: 10.1007/978-0-387-85650-6_8. [18] V. A. Galaktionov, E. Mitidieri and S. I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II, Nonl. Anal.: RWA, 12 (2011), 2435-2466 (arXiv:1103.2643).doi: 10.1016/j.nonrwa.2011.03.001. [19] M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, Oxford/Paris, 1964. [20] M. A. Krasnosel'skii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer-Verlag, Berlin/Tokio, 1984.doi: 10.1007/978-3-642-69409-7. [21] C. Liu, Qualitative properties for a sixth-order thin film equation, Mathematical Modelling and Analysis, 15 (2010), 457-471.doi: 10.3846/1392-6292.2010.15.457-471. [22] X. Liu and C. Qu, Existence and blow-up of weak solutions for a sixth-order equation related to thin solid films, Nonlinear Anal. Real World Appl., 11 (2010), 4214-4222.doi: 10.1016/j.nonrwa.2010.05.008. [23] L. Perko, Differential Equations and Dynamical Systems, Springer Verlag, New York, 1991.doi: 10.1007/978-1-4684-0392-3. [24] M. A. Vainberg and V. A. Trenogin, Theory of Branching of Solutions of Non-Linear Equations, Noordhoff Int. Publ., Leiden, 1974.