• Previous Article
    Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian
  • DCDS Home
  • This Issue
  • Next Article
    On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum
February  2016, 36(2): 1105-1124. doi: 10.3934/dcds.2016.36.1105

Exact controllability for first order quasilinear hyperbolic systems with internal controls

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China

Received  May 2014 Published  August 2015

Based on the theory of the local exact boundary controllability for first order quasilinear hyperbolic systems, using an extension method, the authors establish the exact controllability in a shorter time by means of internal controls acting on suitable domains. In particular, under certain special but reasonable hypotheses, the exact controllability can be realized only by internal controls, and the control time can be arbitrarily small.
Citation: Kaili Zhuang, Tatsien Li, Bopeng Rao. Exact controllability for first order quasilinear hyperbolic systems with internal controls. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1105-1124. doi: 10.3934/dcds.2016.36.1105
References:
[1]

T. Li, Controllability and Observabilty for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3, (2010), American Institute of Mathematical Sciences & Higher Education Press, Springfield, Beijing.

[2]

T. Li and Y. Jin, Semi-global $C^1$ solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22 (2001), 325-336. doi: 10.1142/S0252959901000334.

[3]

T. Li and B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math., 23 (2002), 209-218. doi: 10.1142/S0252959902000201.

[4]

T. Li and B. Rao, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., 41 (2003), 1748-1755.

[5]

T. Li and B. Rao, Strong(Weak) exact controllability and Strong(Weak) exact observability for quasilinear hyperbolic systems[J], Chin. Ann. Math., 31 (2010), 723-742. doi: 10.1007/s11401-010-0600-9.

[6]

T. Li and W. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, Duke University Press, Durham, 1985.

[7]

J.-L. Lions, Exact controllability, stabilization and pertubations for distributed systems, SIAM Rev., 30 (1988), 1-68. doi: 10.1137/1030001.

[8]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[9]

L. Yu, Semi-global $C^1$ solution to the mixed initial-boundary value problem for a kind of quasilinear hyperbolic systems (in Chinese), Chin. Ann. Math., 25 (2004), 549-560.

[10]

K. Zhuang, Exact controllability with internal controls for first order quasilinear hyperbolic systems with zero eigenvalues,, to appear in Chin. Ann. Math., (). 

show all references

References:
[1]

T. Li, Controllability and Observabilty for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3, (2010), American Institute of Mathematical Sciences & Higher Education Press, Springfield, Beijing.

[2]

T. Li and Y. Jin, Semi-global $C^1$ solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22 (2001), 325-336. doi: 10.1142/S0252959901000334.

[3]

T. Li and B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math., 23 (2002), 209-218. doi: 10.1142/S0252959902000201.

[4]

T. Li and B. Rao, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., 41 (2003), 1748-1755.

[5]

T. Li and B. Rao, Strong(Weak) exact controllability and Strong(Weak) exact observability for quasilinear hyperbolic systems[J], Chin. Ann. Math., 31 (2010), 723-742. doi: 10.1007/s11401-010-0600-9.

[6]

T. Li and W. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, Duke University Press, Durham, 1985.

[7]

J.-L. Lions, Exact controllability, stabilization and pertubations for distributed systems, SIAM Rev., 30 (1988), 1-68. doi: 10.1137/1030001.

[8]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[9]

L. Yu, Semi-global $C^1$ solution to the mixed initial-boundary value problem for a kind of quasilinear hyperbolic systems (in Chinese), Chin. Ann. Math., 25 (2004), 549-560.

[10]

K. Zhuang, Exact controllability with internal controls for first order quasilinear hyperbolic systems with zero eigenvalues,, to appear in Chin. Ann. Math., (). 

[1]

Tatsien Li (Daqian Li). Global exact boundary controllability for first order quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1419-1432. doi: 10.3934/dcdsb.2010.14.1419

[2]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[3]

Klaus-Jochen Engel, Marjeta Kramar FijavŽ. Exact and positive controllability of boundary control systems. Networks and Heterogeneous Media, 2017, 12 (2) : 319-337. doi: 10.3934/nhm.2017014

[4]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. A note on the one-side exact boundary controllability for quasilinear hyperbolic systems. Communications on Pure and Applied Analysis, 2009, 8 (1) : 405-418. doi: 10.3934/cpaa.2009.8.405

[5]

Manuel González-Burgos, Sergio Guerrero, Jean Pierre Puel. Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Communications on Pure and Applied Analysis, 2009, 8 (1) : 311-333. doi: 10.3934/cpaa.2009.8.311

[6]

Nicolás Carreño. Local controllability of the $N$-dimensional Boussinesq system with $N-1$ scalar controls in an arbitrary control domain. Mathematical Control and Related Fields, 2012, 2 (4) : 361-382. doi: 10.3934/mcrf.2012.2.361

[7]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks and Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[8]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure and Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[9]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[10]

Karine Beauchard, Morgan Morancey. Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Mathematical Control and Related Fields, 2014, 4 (2) : 125-160. doi: 10.3934/mcrf.2014.4.125

[11]

Shu-Guang Shao, Shu Wang, Wen-Qing Xu, Yu-Li Ge. On the local C1, α solution of ideal magneto-hydrodynamical equations. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2103-2113. doi: 10.3934/dcds.2017090

[12]

Umberto De Maio, Akamabadath K. Nandakumaran, Carmen Perugia. Exact internal controllability for the wave equation in a domain with oscillating boundary with Neumann boundary condition. Evolution Equations and Control Theory, 2015, 4 (3) : 325-346. doi: 10.3934/eect.2015.4.325

[13]

Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143

[14]

Larissa V. Fardigola. Controllability problems for the 1-d wave equations on a half-axis with Neumann boundary control. Mathematical Control and Related Fields, 2013, 3 (2) : 161-183. doi: 10.3934/mcrf.2013.3.161

[15]

José R. Quintero, Alex M. Montes. Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type. Evolution Equations and Control Theory, 2022, 11 (3) : 681-709. doi: 10.3934/eect.2021021

[16]

Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control and Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019

[17]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[18]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021036

[19]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control and Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[20]

Giuseppe Floridia, Hiroshi Takase, Masahiro Yamamoto. A Carleman estimate and an energy method for a first-order symmetric hyperbolic system. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022016

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]