Citation: |
[1] |
T. Li, Controllability and Observabilty for Quasilinear Hyperbolic Systems, AIMS Series on Applied Mathematics, 3, (2010), American Institute of Mathematical Sciences & Higher Education Press, Springfield, Beijing. |
[2] |
T. Li and Y. Jin, Semi-global $C^1$ solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems, Chin. Ann. Math., 22 (2001), 325-336.doi: 10.1142/S0252959901000334. |
[3] |
T. Li and B. Rao, Local exact boundary controllability for a class of quasilinear hyperbolic systems, Chin. Ann. Math., 23 (2002), 209-218.doi: 10.1142/S0252959902000201. |
[4] |
T. Li and B. Rao, Exact boundary controllability for quasilinear hyperbolic systems, SIAM J. Control Optim., 41 (2003), 1748-1755. |
[5] |
T. Li and B. Rao, Strong(Weak) exact controllability and Strong(Weak) exact observability for quasilinear hyperbolic systems[J], Chin. Ann. Math., 31 (2010), 723-742.doi: 10.1007/s11401-010-0600-9. |
[6] |
T. Li and W. Yu, Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series V, Duke University Press, Durham, 1985. |
[7] |
J.-L. Lions, Exact controllability, stabilization and pertubations for distributed systems, SIAM Rev., 30 (1988), 1-68.doi: 10.1137/1030001. |
[8] |
D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), 639-739.doi: 10.1137/1020095. |
[9] |
L. Yu, Semi-global $C^1$ solution to the mixed initial-boundary value problem for a kind of quasilinear hyperbolic systems (in Chinese), Chin. Ann. Math., 25 (2004), 549-560. |
[10] |
K. Zhuang, Exact controllability with internal controls for first order quasilinear hyperbolic systems with zero eigenvalues, to appear in Chin. Ann. Math., Series B. |