Advanced Search
Article Contents
Article Contents

Pure discrete spectrum for a class of one-dimensional substitution tiling systems

Abstract Related Papers Cited by
  • We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the $\mathbb{R}$-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all $\beta$-substitutions for $\beta$ a Pisot simple Parry number have tiling dynamical systems with pure discrete spectrum, as do the Pisot systems arising, for example, from substitutions associated with the Jacobi-Perron and Brun continued fraction algorithms.
    Mathematics Subject Classification: Primary: 37B05, 37B50; Secondary: 11A55, 11A63.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Akiyama, M. Barge, V. Berthé, J.-Y. Lee and A. Siegel, On the Pisot Conjecture, in Mathematics of Aperiodic Order (eds. J. Kellendonk, D. Lenz and J. Savinien), Progress in Mathematics, 309, 2015, 33-72.


    S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., 226, (2011), 2855-2883.doi: 10.1016/j.aim.2010.07.019.


    S. Akiyama and J.-Y. Lee, Computation of pure discrete spectrum of self-affine tilings, preprint.


    J. E. Anderson and I. F. Putnam, Topological invariants for substitution tilings and their associated $C^*$-algebras, Ergodic Theory & Dynamical Systems, 18 (1998), 509-537.doi: 10.1017/S0143385798100457.


    P. Arnoux and S. Ito, Pisot Substitutions and Rauzy fractals, Bull. Belg. Math Soc., 8 (2001), 181-207.


    A. Avila and V. Delecroix, Some monoids of Pisot matrices, preprint, arXiv:1506.03692v1.


    V. Baker, M. Barge and J. Kwapisz, Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to $\beta$-shifts, Ann. Inst. Fourier (Grenoble), 56 (2006), 2213-2248.doi: 10.5802/aif.2238.


    M. Barge, Factors of Pisot tiling spaces and the coincidence rank conjecture, arXiv:1301.7094.


    M. Barge and B. Diamond, A complete invariant for the topology of one- dimensional substitution tiling spaces, Ergod. Th. & Dyn. Sys., 21 (2001), 1333-1358.doi: 10.1017/S0143385701001638.


    M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130 (2002), 619-626.


    M. Barge and J. Kellendonk, Proximality and pure point spectrum for tiling dynamical systems, Michigan Math. J., 62 (2013), 793-822.doi: 10.1307/mmj/1387226166.


    M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer J. Math., {\bf128} (2006), 1219-1282.doi: 10.1353/ajm.2006.0037.


    M. Barge, S. Štimac and R. F. Williams, Pure discrete spectrum in substitution tiling spaces, Disc. and Cont. Dynam. Sys. - A, 2 (2013), 579-597.doi: 10.3934/dcds.2013.33.579.


    V. Berthé, J. Bourdon, T. Jolivet and A. Siegel, A combinatorial approach to products of Pisot substitutions, arXiv:1401.0704v1.


    V. Berthé, S. Ferenczi and L. Q. Zamboni, Interactions between dynamics, arihtmetics and combinatorics: The good, the bad, and the ugly, in Algebraic and Topological Dynamics, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005, 333-364.doi: 10.1090/conm/385/07205.


    V. Berthé, T. Jolivet and A. Siegel, Substitutive Arnoux-Rauzy substitutions have pure discrete spectrum, Unif. Distrib. Theory, 7 (2012), 173-197.


    V. Berthé, Multidimensional Euclidean algorithms, numeration and substitutions, Integers, 11B (2011), Paper No. A2, 34pp.


    A. Bertrand, Développements en base de Pisot et répartition modulo 1, C. R. Acad. Sci. Paris, 280 (1979), A1-A4.


    J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une questionde Morse et Hedlund, Ann. Inst. Fourier (Grenoble), Numération, Pavages, Substitutions, 56 (2006), 2249-2270.doi: 10.5802/aif.2239.


    A. Clark and L. Sadun, When size matters: Subshifts and their related tiling spaces, Ergodic Theory Dynam. Systems, 23 (2003), 1043-1057.doi: 10.1017/S0143385702001633.


    E. Dubois, A. Farhane and R. Paysant-Le Roux, The Jacobi-Perron algorithm and Pisot numbers, Acta Arith., 111 (2004), 269-275.doi: 10.4064/aa111-3-4.


    H. Ei and S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. and Theo. Comp. Science, 7 (2005), 81-121.


    M. Hollander and B. Solomyak, Two-symbol Pisot substitutions have pure discrete spectrum, Ergodic Theory & Dynamical Systems, 23 (2003), 533-540.doi: 10.1017/S0143385702001384.


    B. Mossé, Puissances de mots et reconnaissabilité des points fixes d'une substitution, Theoretical Computer Science, 99 (1992), 327-334.doi: 10.1016/0304-3975(92)90357-L.


    F. Schweiger, Multidimensional Continued Fractions, Oxford Science Publications, Oxford University Press, Oxford, 2000.


    K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., 12 (1980), 269-278.doi: 10.1112/blms/12.4.269.


    N. Sidorov, Arithmetic dynamics, in Topics in Dynamics and Ergodic Theory, London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, 2003, 145-189.doi: 10.1017/CBO9780511546716.010.


    B. Solomyak, Dynamics of self-similar tilings, Ergod. Th. & Dynam. Sys., 17 (1997), 695-738.doi: 10.1017/S0143385797084988.


    B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete Comput. Geometry, 20 (1998), 265-279.doi: 10.1007/PL00009386.


    P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, New York, 1982.

  • 加载中

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint