Citation: |
[1] |
D. Alexander, I. Kim and Y. Yao, Quasi-static evolution and congested crowd transport, Nolinearity, 27 (2014), 823-858.doi: 10.1088/0951-7715/27/4/823. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. |
[3] |
A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn. Syst., 10 (2011), 212-250.doi: 10.1137/100804504. |
[4] |
M. Bounkhel, Regularity Concepts in Nonsmooth Analysis. Theory and Applications, Springer Optimization and Its Applications, 59, Springer, New York, 2012.doi: 10.1007/978-1-4614-1019-5. |
[5] |
J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., 156 (2011), 229-271.doi: 10.1215/00127094-2010-211. |
[6] |
J. A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials, Nonlinear Anal., 100 (2014), 122-147.doi: 10.1016/j.na.2014.01.010. |
[7] |
F. H. Clarke, R. J. Stern and P. R. Wolenski, Proximal smoothness and the lower-$C^2$ property, J. Convex Anal., 2 (1995), 117-144. |
[8] |
J. F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process, Math. Program., 104 (2005), 347-373.doi: 10.1007/s10107-005-0619-y. |
[9] |
J. F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation, J. Differential Equations, 226 (2006), 135-179.doi: 10.1016/j.jde.2005.12.005. |
[10] |
I. Fonseca and G. Leoni, Modern Methods in the Calculus of Variations: $L^p$ Spaces, Springer Monographs in Mathematics, Springer, New York, 2007. |
[11] |
R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17.doi: 10.1137/S0036141096303359. |
[12] |
B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., 20 (2010), 1787-1821.doi: 10.1142/S0218202510004799. |
[13] |
B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion modeling, Netw. Heterog. Media, 6 (2011), 485-519.doi: 10.3934/nhm.2011.6.485. |
[14] |
J.-J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires, C. R. Acad. Sci. Paris, 255 (1962), 238-240. |
[15] |
R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions, Trans. Amer. Math. Soc., 352 (2000), 5231-5249.doi: 10.1090/S0002-9947-00-02550-2. |
[16] |
R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N. J., 1970. |
[17] |
C. Topaz, A. Bernoff, S. S. Logan and W. Toolson, A model for rolling swarms of locusts, Eur. Phys. J. Special Topics, 157 (2008), 93-109.doi: 10.1140/epjst/e2008-00633-y. |
[18] |
C. M. Topaz, M. R. D'Orsogna, L. Edelstein-Keshet and A. J. Bernoff, Locust dynamics: Behavioral phase change and swarming, PLoS Comput. Biol., 8 (2012), e1002642, 11pp.doi: 10.1371/journal.pcbi.1002642. |
[19] |
J. Venel, A numerical scheme for a class of sweeping processes, Numer. Math., 118 (2011), 367-400.doi: 10.1007/s00211-010-0329-0. |
[20] |
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI, 2003. |
[21] |
C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338, Springer-Verlag, Berlin, 2009.doi: 10.1007/978-3-540-71050-9. |
[22] |
L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries, Comm. Partial Differential Equations, 40 (2015), 1241-1281.doi: 10.1080/03605302.2015.1015033. |
[23] |
L. Wu and D. Slepčev, Nonlocal interaction equations in environments with heterogeneities and boundaries: Compactly supported initial data case, in preparation. |