\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Passive scalars, moving boundaries, and Newton's law of cooling

Abstract Related Papers Cited by
  • We study the evolution of passive scalars in both rigid and moving slab-like domains, in both horizontally periodic and infinite contexts. The scalar is required to satisfy Robin-type boundary conditions corresponding to Newton's law of cooling, which lead to nontrivial equilibrium configurations. We study the equilibration rate of the passive scalar in terms of the parameters in the boundary condition and the equilibration rates of the background velocity field and moving domain.
    Mathematics Subject Classification: Primary: 35Q35, 35B40, 35A23; Secondary: 35A23, 35Q30, 58J65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Beale, Large-time regularity of viscous surface waves, Arch. Rational Mech. Anal., 84 (1983/84), 307-352. doi: 10.1007/BF00250586.

    [2]

    J. Beale and T. Nishida, Large-time behavior of viscous surface waves, Recent topics in nonlinear PDE, II (Sendai, 1984), 1-14, North-Holland Math. Stud., 128, North-Holland, Amsterdam, 1985.doi: 10.1016/S0304-0208(08)72355-7.

    [3]

    P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatoš, Diffusion and mixing in fluid flow, Ann. of Math. (2), 168 (2008), 643-674.doi: 10.4007/annals.2008.168.643.

    [4]

    A. Kiselev, R. Shterenberg and A. Zlatoš, Relaxation enhancement by time-periodic flows, Indiana Univ. Math. J., 57 (2008), 2137-2152.doi: 10.1512/iumj.2008.57.3349.

    [5]

    Y. Guo and I. Tice, Almost exponential decay of periodic viscous surface waves without surface tension, Arch. Rational Mech. Anal., 207 (2013), 459-531.doi: 10.1007/s00205-012-0570-z.

    [6]

    Y. Guo and I. Tice, Decay of viscous surface waves without surface tension in horizontally infinite domains, Anal. PDE, 6 (2013), 1429-1533.doi: 10.2140/apde.2013.6.1429.

    [7]

    Y. Guo and I. Tice, Local well-posedness of the viscous surface wave problem without surface tension, Anal. PDE, 6 (2013), 287-369.doi: 10.2140/apde.2013.6.287.

    [8]

    Y. Guo and Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37 (2012), 2165-2208.doi: 10.1080/03605302.2012.696296.

    [9]

    Z. Lin, J.-L. Thiffeault and C. Doering, Optimal stirring strategies for passive scalar mixing, J. Fluid Mech., 675 (2011), 465-476.doi: 10.1017/S0022112011000292.

    [10]

    A. Majda and P. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Phys. Rep., 314 (1999), 237-574.doi: 10.1016/S0370-1573(98)00083-0.

    [11]

    T. Nishida, Y. Teramoto and H. Yoshihara, Global in time behavior of viscous surface waves: Horizontally periodic motion, J. Math. Kyoto Univ., 44 (2004), 271-323.

    [12]

    J. Slattery, Advanced Transport Phenomena, Cambridge University Press, Cambridge, 1999.

    [13]

    W. Strauss, Partial Differential Equations. An Introduction, John Wiley and Sons, Inc., New York, 1992.

    [14]

    J.-L. Thiffeault, Using multiscale norms to quantify mixing and transport, Nonlinearity, 25 (2012), R1-R44.doi: 10.1088/0951-7715/25/2/R1.

    [15]

    Z. Warhaft, Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32 (2000), 203-240.doi: 10.1146/annurev.fluid.32.1.203.

    [16]

    A. Zlatoš, Diffusion in fluid flow: Dissipation enhancement by flows in 2D, Comm. Partial Differential Equations, 35 (2010), 496-534.doi: 10.1080/03605300903362546.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return