March  2016, 36(3): 1721-1736. doi: 10.3934/dcds.2016.36.1721

A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$

1. 

School of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, China

2. 

Department of Mathematics, INS and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240

3. 

Department of Mathematics, Yeshiva University, New York, NY 10033

4. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China

Received  November 2014 Revised  April 2015 Published  August 2015

In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}^n_+$: \begin{equation} \left\{\begin{array}{ll} (-\triangle)^{\alpha/2} u(x)=0,~u(x)\geq0, & \qquad x\in\mathbb{R}^n_+, \\ u(x)\equiv0, & \qquad x\notin\mathbb{R}^{n}_{+}. \end{array}\right.                      (1) \end{equation} We prove that all solutions of (1) are either identically zero or assuming the form \begin{equation} u(x)=\left\{\begin{array}{ll}Cx_n^{\alpha/2}, & \qquad x\in\mathbb{R}^n_+, \\ 0, & \qquad x\notin\mathbb{R}^{n}_{+}, \end{array}\right. \label{2} \end{equation} for some positive constant $C$.
Citation: Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721
References:
[1]

K. Bogdan, T. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.

[2]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.

[3]

W. Chen, L. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015), 370-381. doi: 10.1016/j.na.2014.11.003.

[4]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[5]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354.

[6]

L. Dupaigne and Y. Sire, A Liouville theorem for non-local elliptic equations, Symmetry for elliptic PDEs, Contemp. Math., 528 (2010), 105-114. doi: 10.1090/conm/528/10417.

[7]

M. Fall, Entire s-harmonic functions are affine, preprint, arXiv:1407.5934.

[8]

M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint, arXiv:1309.7230.

[9]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Advances in Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.

[10]

N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag Berlin Heidelberg, New York, 1972. doi: 10.1007/978-3-642-65183-0.

[11]

M. Lazzo and P. Schmidt, Nonexistence criteria for polyharmonic boundary-value problems, Analysis, 28 (2008), 449-460. doi: 10.1524/anly.2008.0928.

[12]

M. Lazzo and P. Schmidt, Oscillatory radial solutions for subcritical biharmonic equations, J. Differential Equations, 247 (2009), 1479-1504. doi: 10.1016/j.jde.2009.05.005.

[13]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[14]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Analysis, 75 (2012), 3036-3048. doi: 10.1016/j.na.2011.11.036.

[15]

G. Lu and J. Zhu, The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math., 253 (2011), 455-473. doi: 10.2140/pjm.2011.253.455.

[16]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[17]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differential & Integral Equations, 9 (1996), 465-479.

[18]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684. doi: 10.1002/cpa.3160380515.

[19]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[20]

X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, preprint, arXiv:1404.1197.

[21]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.

[22]

M. Zhu, Liouville theorems on some indefinite equations, Proc. Roy. Soc. Edinburgh Sect. A Math., 129 (1999), 649-661. doi: 10.1017/S0308210500021569.

show all references

References:
[1]

K. Bogdan, T. Kulczycki and A. Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes, Illinois J. Math., 46 (2002), 541-556.

[2]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.

[3]

W. Chen, L. D'Ambrosio and Y. Li, Some Liouville theorems for the fractional Laplacian, Nonlinear Anal., 121 (2015), 370-381. doi: 10.1016/j.na.2014.11.003.

[4]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[5]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Disc. Cont. Dyn. Sys., 12 (2005), 347-354.

[6]

L. Dupaigne and Y. Sire, A Liouville theorem for non-local elliptic equations, Symmetry for elliptic PDEs, Contemp. Math., 528 (2010), 105-114. doi: 10.1090/conm/528/10417.

[7]

M. Fall, Entire s-harmonic functions are affine, preprint, arXiv:1407.5934.

[8]

M. Fall and T. Weth, Monotonicity and nonexistence results for some fractional elliptic problems in the half space, preprint, arXiv:1309.7230.

[9]

Y. Fang and W. Chen, A Liouville type theorem for poly-harmonic Dirichlet problem in a half space, Advances in Math., 229 (2012), 2835-2867. doi: 10.1016/j.aim.2012.01.018.

[10]

N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag Berlin Heidelberg, New York, 1972. doi: 10.1007/978-3-642-65183-0.

[11]

M. Lazzo and P. Schmidt, Nonexistence criteria for polyharmonic boundary-value problems, Analysis, 28 (2008), 449-460. doi: 10.1524/anly.2008.0928.

[12]

M. Lazzo and P. Schmidt, Oscillatory radial solutions for subcritical biharmonic equations, J. Differential Equations, 247 (2009), 1479-1504. doi: 10.1016/j.jde.2009.05.005.

[13]

Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[14]

G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Analysis, 75 (2012), 3036-3048. doi: 10.1016/j.na.2011.11.036.

[15]

G. Lu and J. Zhu, The axial symmetry and regularity of solutions to an integral equation in a half space, Pacific J. Math., 253 (2011), 455-473. doi: 10.2140/pjm.2011.253.455.

[16]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Comm. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[17]

E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in $R^N$, Differential & Integral Equations, 9 (1996), 465-479.

[18]

L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math., 38 (1985), 679-684. doi: 10.1002/cpa.3160380515.

[19]

X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302. doi: 10.1016/j.matpur.2013.06.003.

[20]

X. Ros-Oton and J. Serra, Boundary regularity for fully nonlinear integro-differential equations, preprint, arXiv:1404.1197.

[21]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112. doi: 10.1002/cpa.20153.

[22]

M. Zhu, Liouville theorems on some indefinite equations, Proc. Roy. Soc. Edinburgh Sect. A Math., 129 (1999), 649-661. doi: 10.1017/S0308210500021569.

[1]

Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236

[2]

Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555

[3]

Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248

[4]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[5]

Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure and Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127

[6]

Alexander Quaas, Aliang Xia. Existence and uniqueness of positive solutions for a class of logistic type elliptic equations in $\mathbb{R}^N$ involving fractional Laplacian. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2653-2668. doi: 10.3934/dcds.2017113

[7]

Ovidiu Savin. A Liouville theorem for solutions to the linearized Monge-Ampere equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 865-873. doi: 10.3934/dcds.2010.28.865

[8]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, 2021, 29 (5) : 2829-2839. doi: 10.3934/era.2021016

[9]

Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 427-440. doi: 10.3934/dcdss.2021083

[10]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[11]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395

[12]

Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609

[13]

De Tang, Yanqin Fang. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2431-2451. doi: 10.3934/cpaa.2015.14.2431

[14]

Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393

[15]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[16]

Serena Dipierro, Enrico Valdinoci. On a fractional harmonic replacement. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3377-3392. doi: 10.3934/dcds.2015.35.3377

[17]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[18]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure and Applied Analysis, 2006, 5 (4) : 813-826. doi: 10.3934/cpaa.2006.5.813

[19]

C. Cortázar, Marta García-Huidobro. On the uniqueness of ground state solutions of a semilinear equation containing a weighted Laplacian. Communications on Pure and Applied Analysis, 2006, 5 (1) : 71-84. doi: 10.3934/cpaa.2006.5.71

[20]

Kunquan Lan, Wei Lin. Uniqueness of nonzero positive solutions of Laplacian elliptic equations arising in combustion theory. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 849-861. doi: 10.3934/dcdsb.2016.21.849

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (155)
  • HTML views (0)
  • Cited by (5)

[Back to Top]