# American Institute of Mathematical Sciences

March  2016, 36(3): 1737-1757. doi: 10.3934/dcds.2016.36.1737

## On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion

 1 Department of Applied Mathematics Chongqing University of Posts, and Telecommunications, Chongqing 400065, China 2 College of Mathematics and Statistics, Chongqing University, Chongqing 401331 3 College of Mathematic and Information, China West Normal University, Nanchong 637002, China

Received  December 2014 Revised  May 2015 Published  August 2015

This paper deals with a parabolic-parabolic-ODE chemotaxis haptotaxis system with nonlinear diffusion \begin{eqnarray*}\label{1a} \left\{ \begin{split}{} &u_{t}=\nabla\cdot(\varphi(u)\nabla u)-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), \\ &v_{t}=\Delta v-v+u, \\ &w_{t}=-vw, \end{split} \right. \end{eqnarray*} under Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{2}$, where $\chi$, $\xi$ and $\mu$ are positive parameters and $\varphi(u)$ is a nonlinear diffusion function. Firstly, under the case of non-degenerate diffusion, it is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in $\Omega\times(0,\infty)$. Moreover, under the case of degenerate diffusion, we prove that the corresponding problem admits at least one nonnegative global bounded-in-time weak solution. Finally, under some additional conditions, we derive the temporal decay estimate of $w$.
Citation: Pan Zheng, Chunlai Mu, Xiaojun Song. On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1737-1757. doi: 10.3934/dcds.2016.36.1737
##### References:
 [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868. doi: 10.1080/03605307908820113. [2] S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells, J. Cell Biol., 110 (1990), 1427-1438. doi: 10.1083/jcb.110.4.1427. [3] D. Besser, P. Verde, Y. Nagamine and F. Blasi, Signal transduction and u-PA/u-PAR system, Fibrinolysis, 10 (1996), 215-237. doi: 10.1016/S0268-9499(96)80018-X. [4] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734. doi: 10.1142/S0218202505000947. [5] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399-439. doi: 10.3934/nhm.2006.1.399. [6] T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009. [7] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. [8] K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71. doi: 10.1016/j.na.2014.06.017. [9] K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224. doi: 10.1002/mma.3149. [10] K. Fujie and T. Yokota, Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity, Math. Bohem., 139 (2014), 639-647. [11] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. [12] T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), 165-198. doi: 10.1142/S0218202512500480. [13] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math. -Verein., 105 (2003), 103-165. [14] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II, Jahresber. Deutsch. Math. -Verein., 106 (2004), 51-69. [15] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. [16] S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028. [17] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6. [18] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. [19] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398. doi: 10.1016/j.jmaa.2008.01.005. [20] D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546. doi: 10.1002/mma.3240. [21] L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733-737. [22] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407. [23] B. Perthame, Transport Equations in Biology, Birkhäser-BaselVerlag, Switzerland, 2007. [24] Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60-69. doi: 10.1016/j.jmaa.2008.12.039. [25] Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv:1407.7382v1, 2014. [26] Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221-2238. doi: 10.1088/0951-7715/21/10/002. [27] Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558. doi: 10.1137/090751542. [28] Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443. [29] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704. doi: 10.1137/100802943. [30] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. [31] Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239. doi: 10.1088/0951-7715/27/6/1225. [32] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. [33] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., Vol. 2, North-Holland, Amsterdam, 1977. [34] L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. [35] Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion, SIAM J. Math. Anal., 44 (2012), 3502-3525. doi: 10.1137/110853972. [36] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. [37] M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064. doi: 10.1016/j.na.2009.07.045.

show all references

##### References:
 [1] N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868. doi: 10.1080/03605307908820113. [2] S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells, J. Cell Biol., 110 (1990), 1427-1438. doi: 10.1083/jcb.110.4.1427. [3] D. Besser, P. Verde, Y. Nagamine and F. Blasi, Signal transduction and u-PA/u-PAR system, Fibrinolysis, 10 (1996), 215-237. doi: 10.1016/S0268-9499(96)80018-X. [4] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734. doi: 10.1142/S0218202505000947. [5] M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Net. Hetero. Med., 1 (2006), 399-439. doi: 10.3934/nhm.2006.1.399. [6] T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076. doi: 10.1088/0951-7715/21/5/009. [7] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. [8] K. Fujie, M. Winkler and T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56-71. doi: 10.1016/j.na.2014.06.017. [9] K. Fujie, M. Winkler and T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212-1224. doi: 10.1002/mma.3149. [10] K. Fujie and T. Yokota, Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity, Math. Bohem., 139 (2014), 639-647. [11] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. [12] T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013), 165-198. doi: 10.1142/S0218202512500480. [13] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Deutsch. Math. -Verein., 105 (2003), 103-165. [14] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences II, Jahresber. Deutsch. Math. -Verein., 106 (2004), 51-69. [15] D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107. doi: 10.1016/j.jde.2004.10.022. [16] S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010. doi: 10.1016/j.jde.2014.01.028. [17] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.1090/S0002-9947-1992-1046835-6. [18] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. [19] R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398. doi: 10.1016/j.jmaa.2008.01.005. [20] D. Liu and Y. Tao, Global boundedness in a fully parabolic attraction-repulsion chemotaxis model, Math. Methods Appl. Sci., 38 (2015), 2537-2546. doi: 10.1002/mma.3240. [21] L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733-737. [22] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), 311-338. doi: 10.1007/BF02476407. [23] B. Perthame, Transport Equations in Biology, Birkhäser-BaselVerlag, Switzerland, 2007. [24] Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009), 60-69. doi: 10.1016/j.jmaa.2008.12.039. [25] Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system, arXiv:1407.7382v1, 2014. [26] Y. Tao and M. Wang, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity, 21 (2008), 2221-2238. doi: 10.1088/0951-7715/21/10/002. [27] Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source, SIAM J. Math. Anal., 41 (2009), 1533-1558. doi: 10.1137/090751542. [28] Y. Tao and Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1-36. doi: 10.1142/S0218202512500443. [29] Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704. doi: 10.1137/100802943. [30] Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715. doi: 10.1016/j.jde.2011.08.019. [31] Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239. doi: 10.1088/0951-7715/27/6/1225. [32] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. [33] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl., Vol. 2, North-Holland, Amsterdam, 1977. [34] L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. [35] Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion, SIAM J. Math. Anal., 44 (2012), 3502-3525. doi: 10.1137/110853972. [36] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008. [37] M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064. doi: 10.1016/j.na.2009.07.045.
 [1] Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035 [2] Jiashan Zheng. Boundedness of solutions to a quasilinear higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 627-643. doi: 10.3934/dcds.2017026 [3] Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 [4] Youshan Tao, Michael Winkler. A chemotaxis-haptotaxis system with haptoattractant remodeling: Boundedness enforced by mild saturation of signal production. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2047-2067. doi: 10.3934/cpaa.2019092 [5] Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 [6] Changchun Liu, Pingping Li. Global existence for a chemotaxis-haptotaxis model with $p$-Laplacian. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1399-1419. doi: 10.3934/cpaa.2020070 [7] Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755 [8] Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2211-2236. doi: 10.3934/cpaa.2021064 [9] Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133 [10] Yilong Wang, Xuande Zhang. On a parabolic-elliptic chemotaxis-growth system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 321-328. doi: 10.3934/dcdss.2020018 [11] Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 [12] Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789 [13] Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 [14] Xie Li, Yilong Wang. Boundedness in a two-species chemotaxis parabolic system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2717-2729. doi: 10.3934/dcdsb.2017132 [15] Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262 [16] Liangchen Wang, Jing Zhang, Chunlai Mu, Xuegang Hu. Boundedness and stabilization in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 191-221. doi: 10.3934/dcdsb.2019178 [17] Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334 [18] Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 [19] Aichao Liu, Binxiang Dai, Yuming Chen. Boundedness in a two species attraction-repulsion chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021306 [20] Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258

2020 Impact Factor: 1.392