-
Previous Article
Boundary blow-up solutions to fractional elliptic equations in a measure framework
- DCDS Home
- This Issue
-
Next Article
Time periodic solutions to the three--dimensional equations of compressible magnetohydrodynamic flows
Sharp decay estimates and smoothness for solutions to nonlocal semilinear equations
1. | Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 - Torino, Italy |
2. | Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino |
  We prove sharp pointwise decay estimates for the solutions to such equations, depending on the degree of the non smooth terms in $p(\xi)$. When the nonlinearity is smooth we prove similar estimates for the derivatives of the solution, as well as holomorphic extension to a strip, for analytic nonlinearity.
References:
[1] |
C. J. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.
doi: 10.1007/BF02392447. |
[2] |
T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.
doi: 10.1017/S002211206700103X. |
[3] |
H. A. Biagioni and T. Gramchev, Fractional derivative estimates in Gevrey classes, global regularity and decay for solutions to semilinear equations in $\mathbbR^n$, J. Differential Equations, 194 (2003), 140-165.
doi: 10.1016/S0022-0396(03)00197-9. |
[4] |
J. Bona and Y. Li, Analyticity of solitary-wave solutions of model equations for long waves. SIAM J. Math. Anal., 27 (1996), 725-737.
doi: 10.1137/0527039. |
[5] |
J. Bona and Y. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430.
doi: 10.1016/S0021-7824(97)89957-6. |
[6] |
N. Burq and F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann., 340 (2008), 497-542.
doi: 10.1007/s00208-007-0150-y. |
[7] |
M. Cappiello, T. Gramchev and L. Rodino, Super-exponential decay and holomorphic extensions for semilinear equations with polynomial coefficients, J. Funct. Anal., 237 (2006), 634-654.
doi: 10.1016/j.jfa.2005.12.017. |
[8] |
M. Cappiello, T. Gramchev and L. Rodino, Semilinear pseudo-differential equations and travelling waves, Fields Institute Communications, 52 (2007), 213-238. |
[9] |
M. Cappiello, T. Gramchev and L. Rodino, Sub-exponential decay and uniform holomorphic extensions for semilinear pseudodifferential equations, Comm. Partial Differential Equations, 35 (2010), 846-877.
doi: 10.1080/03605300903509120. |
[10] |
M. Cappiello, T. Gramchev and L. Rodino, Entire extensions and exponential decay for semilinear elliptic equations, J. Anal. Math., 111 (2010), 339-367.
doi: 10.1007/s11854-010-0021-4. |
[11] |
M. Cappiello, T. Gramchev and L. Rodino, Decay estimates for solutions of nonlocal semilinear equations, Nagoya Math. J., 218 (2015), 175-198.
doi: 10.1215/00277630-2891745. |
[12] |
M. Cappiello and F. Nicola, Holomorphic extension of solutions of semilinear elliptic equations, Nonlinear Anal., 74 (2011), 2663-2681.
doi: 10.1016/j.na.2010.12.021. |
[13] |
M. Cappiello and F. Nicola, Regularity and decay of solutions of nonlinear harmonic oscillators, Adv. Math., 229 (2012), 1266-1299.
doi: 10.1016/j.aim.2011.10.018. |
[14] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions. Vols. I, II. Based, in part, on notes left by Harry Bateman, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. |
[15] |
G. Schiano, Perturbazioni non Lineari Per Alcuni Moltiplicatori di Fourier, Master Thesis at University of Turin, 2012. |
[16] |
I. M. Gelfand and G. E. Shilov, Generalized Functions I, Academic Press, New York and London, 1964. |
[17] |
K. Gröchenig, Foundation of Time-frequency Analysis, Birkhäuser, 2001.
doi: 10.1007/978-1-4612-0003-1. |
[18] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I and Vol. III, Springer-Verlag, 1985. |
[19] |
F. Linares, D. Pilod and G. Ponce, Well-posedness for a higher-order Benjamin-Ono equation, J. Differential Equations, 250 (2011), 450-475.
doi: 10.1016/j.jde.2010.08.022. |
[20] |
M. Maris, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51 (2002), 1073-1085.
doi: 10.1016/S0362-546X(01)00880-X. |
[21] |
L. Molinet, J. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[22] |
H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.
doi: 10.1143/JPSJ.39.1082. |
[23] |
E. Stein, Harmonic Analysis, Princeton University Press, 1993. |
[24] |
L. Schwartz, Théorie Des Distributions, Hermann 1966, Paris. |
[25] |
T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbbR)$, J. Hyperbolic Differ. Equ., 1 (2004), 27-49.
doi: 10.1142/S0219891604000032. |
[26] |
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995. |
[27] |
M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.
doi: 10.1007/978-1-4612-0431-2. |
[28] |
M. Taylor, Partial Differential Equations, Vol. III, Springer, 1996.
doi: 10.1007/978-1-4684-9320-7. |
show all references
References:
[1] |
C. J. Amick and J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation - a nonlinear Neumann problem in the plane, Acta Math., 167 (1991), 107-126.
doi: 10.1007/BF02392447. |
[2] |
T. B. Benjamin, Internal waves of permanent form in fluids of great depth, J. Fluid Mech., 29 (1967), 559-592.
doi: 10.1017/S002211206700103X. |
[3] |
H. A. Biagioni and T. Gramchev, Fractional derivative estimates in Gevrey classes, global regularity and decay for solutions to semilinear equations in $\mathbbR^n$, J. Differential Equations, 194 (2003), 140-165.
doi: 10.1016/S0022-0396(03)00197-9. |
[4] |
J. Bona and Y. Li, Analyticity of solitary-wave solutions of model equations for long waves. SIAM J. Math. Anal., 27 (1996), 725-737.
doi: 10.1137/0527039. |
[5] |
J. Bona and Y. Li, Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997), 377-430.
doi: 10.1016/S0021-7824(97)89957-6. |
[6] |
N. Burq and F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann., 340 (2008), 497-542.
doi: 10.1007/s00208-007-0150-y. |
[7] |
M. Cappiello, T. Gramchev and L. Rodino, Super-exponential decay and holomorphic extensions for semilinear equations with polynomial coefficients, J. Funct. Anal., 237 (2006), 634-654.
doi: 10.1016/j.jfa.2005.12.017. |
[8] |
M. Cappiello, T. Gramchev and L. Rodino, Semilinear pseudo-differential equations and travelling waves, Fields Institute Communications, 52 (2007), 213-238. |
[9] |
M. Cappiello, T. Gramchev and L. Rodino, Sub-exponential decay and uniform holomorphic extensions for semilinear pseudodifferential equations, Comm. Partial Differential Equations, 35 (2010), 846-877.
doi: 10.1080/03605300903509120. |
[10] |
M. Cappiello, T. Gramchev and L. Rodino, Entire extensions and exponential decay for semilinear elliptic equations, J. Anal. Math., 111 (2010), 339-367.
doi: 10.1007/s11854-010-0021-4. |
[11] |
M. Cappiello, T. Gramchev and L. Rodino, Decay estimates for solutions of nonlocal semilinear equations, Nagoya Math. J., 218 (2015), 175-198.
doi: 10.1215/00277630-2891745. |
[12] |
M. Cappiello and F. Nicola, Holomorphic extension of solutions of semilinear elliptic equations, Nonlinear Anal., 74 (2011), 2663-2681.
doi: 10.1016/j.na.2010.12.021. |
[13] |
M. Cappiello and F. Nicola, Regularity and decay of solutions of nonlinear harmonic oscillators, Adv. Math., 229 (2012), 1266-1299.
doi: 10.1016/j.aim.2011.10.018. |
[14] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions. Vols. I, II. Based, in part, on notes left by Harry Bateman, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. |
[15] |
G. Schiano, Perturbazioni non Lineari Per Alcuni Moltiplicatori di Fourier, Master Thesis at University of Turin, 2012. |
[16] |
I. M. Gelfand and G. E. Shilov, Generalized Functions I, Academic Press, New York and London, 1964. |
[17] |
K. Gröchenig, Foundation of Time-frequency Analysis, Birkhäuser, 2001.
doi: 10.1007/978-1-4612-0003-1. |
[18] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I and Vol. III, Springer-Verlag, 1985. |
[19] |
F. Linares, D. Pilod and G. Ponce, Well-posedness for a higher-order Benjamin-Ono equation, J. Differential Equations, 250 (2011), 450-475.
doi: 10.1016/j.jde.2010.08.022. |
[20] |
M. Maris, On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal., 51 (2002), 1073-1085.
doi: 10.1016/S0362-546X(01)00880-X. |
[21] |
L. Molinet, J. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 33 (2001), 982-988.
doi: 10.1137/S0036141001385307. |
[22] |
H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, 39 (1975), 1082-1091.
doi: 10.1143/JPSJ.39.1082. |
[23] |
E. Stein, Harmonic Analysis, Princeton University Press, 1993. |
[24] |
L. Schwartz, Théorie Des Distributions, Hermann 1966, Paris. |
[25] |
T. Tao, Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbbR)$, J. Hyperbolic Differ. Equ., 1 (2004), 27-49.
doi: 10.1142/S0219891604000032. |
[26] |
G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995. |
[27] |
M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.
doi: 10.1007/978-1-4612-0431-2. |
[28] |
M. Taylor, Partial Differential Equations, Vol. III, Springer, 1996.
doi: 10.1007/978-1-4684-9320-7. |
[1] |
Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663 |
[2] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[3] |
Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941 |
[4] |
Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27 |
[5] |
Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205 |
[6] |
Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051 |
[7] |
Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237 |
[8] |
Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689 |
[9] |
G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327 |
[10] |
Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022048 |
[11] |
Robert Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5189-5215. doi: 10.3934/dcds.2020225 |
[12] |
Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057 |
[13] |
Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295 |
[14] |
Khaled El Dika. Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 583-622. doi: 10.3934/dcds.2005.13.583 |
[15] |
Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185 |
[16] |
José R. Quintero, Alex M. Montes. Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type. Evolution Equations and Control Theory, 2022, 11 (3) : 681-709. doi: 10.3934/eect.2021021 |
[17] |
Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15 |
[18] |
Yaping Wu, Xiuxia Xing, Qixiao Ye. Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 47-66. doi: 10.3934/dcds.2006.16.47 |
[19] |
Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067 |
[20] |
H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]